1,001
Views
3
CrossRef citations to date
0
Altmetric
Extra View

Homeostatic plasticity in Drosophila central neurons, and implications in human diseases

&
Pages 153-157 | Published online: 01 Jul 2012

References

  • Ping Y, Tsunoda S. Inactivity-induced increase in nAChRs upregulates Shal K(+) channels to stabilize synaptic potentials. Nat Neurosci 2012; 15:90 - 7; http://dx.doi.org/10.1038/nn.2969; PMID: 22081160
  • Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 1999; 19:4804 - 14; PMID: 10366615
  • Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 2001; 21:4125 - 33; PMID: 11404397
  • Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156 - 75; http://dx.doi.org/10.1016/j.neuropharm.2006.07.030; PMID: 16949624
  • Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 2012; 4:a005736; http://dx.doi.org/10.1101/cshperspect.a005736; PMID: 22086977
  • Davis GW. Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 2006; 29:307 - 23; http://dx.doi.org/10.1146/annurev.neuro.28.061604.135751; PMID: 16776588
  • Pozo K, Goda Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 2010; 66:337 - 51; http://dx.doi.org/10.1016/j.neuron.2010.04.028; PMID: 20471348
  • Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 2011; 34:89 - 103; http://dx.doi.org/10.1146/annurev-neuro-060909-153238; PMID: 21438687
  • Patrick GN, Bingol B, Weld HA, Schuman EM. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr Biol 2003; 13:2073 - 81; http://dx.doi.org/10.1016/j.cub.2003.10.028; PMID: 14653997
  • Hou Q, Gilbert J, Man HY. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 2011; 72:806 - 18; http://dx.doi.org/10.1016/j.neuron.2011.10.011; PMID: 22153376
  • Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 2011; 332:1576 - 81; http://dx.doi.org/10.1126/science.1202839; PMID: 21700878
  • Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2006; 52:475 - 84; http://dx.doi.org/10.1016/j.neuron.2006.08.034; PMID: 17088213
  • Thiagarajan TC, Piedras-Renteria ES, Tsien RW. alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 2002; 36:1103 - 14; http://dx.doi.org/10.1016/S0896-6273(02)01049-8; PMID: 12495625
  • Goold CP, Nicoll RA. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 2010; 68:512 - 28; http://dx.doi.org/10.1016/j.neuron.2010.09.020; PMID: 21040851
  • Ibata K, Sun Q, Turrigiano GG. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 2008; 57:819 - 26; http://dx.doi.org/10.1016/j.neuron.2008.02.031; PMID: 18367083
  • Lindskog M, Li L, Groth RD, Poburko D, Thiagarajan TC, Han X, et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc Natl Acad Sci U S A 2010; 107:21806 - 11; http://dx.doi.org/10.1073/pnas.1016399107; PMID: 21098665
  • Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2010; 68:1143 - 58; http://dx.doi.org/10.1016/j.neuron.2010.11.034; PMID: 21172615
  • Müller M, Pym EC, Tong A, Davis GW. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 2011; 69:749 - 62; http://dx.doi.org/10.1016/j.neuron.2011.01.025; PMID: 21338884
  • Gu H, O’Dowd DK. Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 2006; 26:265 - 72; http://dx.doi.org/10.1523/JNEUROSCI.4109-05.2006; PMID: 16399696
  • Wilson RI, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 2005; 25:9069 - 79; http://dx.doi.org/10.1523/JNEUROSCI.2070-05.2005; PMID: 16207866
  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73 - 120; http://dx.doi.org/10.1152/physrev.00015.2008; PMID: 19126755
  • Ballivet M, Alliod C, Bertrand S, Bertrand D. Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 1996; 258:261 - 9; http://dx.doi.org/10.1006/jmbi.1996.0248; PMID: 8627624
  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993; 13:596 - 604; PMID: 7678857
  • Lindskog M, Li L, Groth RD, Poburko D, Thiagarajan TC, Han X, et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc Natl Acad Sci U S A 2010; 107:21806 - 11; http://dx.doi.org/10.1073/pnas.1016399107; PMID: 21098665
  • Man HY. GluA2-lacking, calcium-permeable AMPA receptors--inducers of plasticity?. Curr Opin Neurobiol 2011; 21:291 - 8; http://dx.doi.org/10.1016/j.conb.2011.01.001; PMID: 21295464
  • Thiagarajan TC, Lindskog M, Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 2005; 47:725 - 37; http://dx.doi.org/10.1016/j.neuron.2005.06.037; PMID: 16129401
  • Mitra A, Mitra SS, Tsien RW. Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nat Neurosci 2012; 15:250 - 7; http://dx.doi.org/10.1038/nn.3004; PMID: 22179109
  • Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2010; 68:1143 - 58; http://dx.doi.org/10.1016/j.neuron.2010.11.034; PMID: 21172615
  • Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 2011; 34:89 - 103; http://dx.doi.org/10.1146/annurev-neuro-060909-153238; PMID: 21438687
  • Nataraj K, Le Roux N, Nahmani M, Lefort S, Turrigiano G. Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron 2010; 68:750 - 62; http://dx.doi.org/10.1016/j.neuron.2010.09.033; PMID: 21092863
  • Hou Q, Gilbert J, Man HY. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 2011; 72:806 - 18; http://dx.doi.org/10.1016/j.neuron.2011.10.011; PMID: 22153376
  • Sutton MA, Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 2006; 127:49 - 58; http://dx.doi.org/10.1016/j.cell.2006.09.014; PMID: 17018276
  • Lichtman JW, Colman H. Synapse elimination and indelible memory. Neuron 2000; 25:269 - 78; http://dx.doi.org/10.1016/S0896-6273(00)80893-4; PMID: 10719884
  • Beecher HK, Todd DP. A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948-1952, inclusive. Ann Surg 1954; 140:2 - 35; http://dx.doi.org/10.1097/00000658-195407000-00001; PMID: 13159140
  • Steinlein OK, Bertrand D. Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 2008; 76:1175 - 83; http://dx.doi.org/10.1016/j.bcp.2008.07.012; PMID: 18691557
  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41:31 - 7; PMID: 1732720
  • Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, et al. Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 2007; 27:8202 - 18; http://dx.doi.org/10.1523/JNEUROSCI.2199-07.2007; PMID: 17670967
  • Quick MW, Lester RA. Desensitization of neuronal nicotinic receptors. J Neurobiol 2002; 53:457 - 78; http://dx.doi.org/10.1002/neu.10109; PMID: 12436413
  • Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, et al. Presenilins are essential for regulating neurotransmitter release. Nature 2009; 460:632 - 6; http://dx.doi.org/10.1038/nature08177; PMID: 19641596
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298:789 - 91; http://dx.doi.org/10.1126/science.1074069; PMID: 12399581
  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39:409 - 21; http://dx.doi.org/10.1016/S0896-6273(03)00434-3; PMID: 12895417
  • Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron 2003; 37:925 - 37; http://dx.doi.org/10.1016/S0896-6273(03)00124-7; PMID: 12670422
  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 1999; 96:3228 - 33; http://dx.doi.org/10.1073/pnas.96.6.3228; PMID: 10077666
  • Small DH. Network dysfunction in Alzheimer’s disease: does synaptic scaling drive disease progression?. Trends Mol Med 2008; 14:103 - 8; http://dx.doi.org/10.1016/j.molmed.2007.12.006; PMID: 18262842
  • Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 2001; 49:200 - 10; http://dx.doi.org/10.1016/S0006-3223(00)01125-2; PMID: 11230871
  • Frölich L, Kayed R, Zheng H, Sweatt JD, Dineley KT. The cholinergic pathology in Alzheimer’s disease--discrepancies between clinical experience and pathophysiological findings. J Neural Transm 2002; 109:1003 - 13; http://dx.doi.org/10.1007/s007020200083; PMID: 12111437
  • DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51:145 - 55; http://dx.doi.org/10.1002/ana.10069; PMID: 11835370
  • Bednar I, Paterson D, Marutle A, Pham TM, Svedberg M, Hellström-Lindahl E, et al. Selective nicotinic receptor consequences in APP(SWE) transgenic mice. Mol Cell Neurosci 2002; 20:354 - 65; http://dx.doi.org/10.1006/mcne.2002.1112; PMID: 12093166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.