924
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes

, &
Pages 303-308 | Published online: 19 Sep 2012

References

  • Hardy J, Gwinn-Hardy K. Genetic classification of primary neurodegenerative disease. Science 1998; 282:1075 - 9; http://dx.doi.org/10.1126/science.282.5391.1075; PMID: 9804538
  • LeDoux M, ed. Movement Disorders: Genetics and Models: Academic Press, 2005.
  • Crist TO, MacMahon JA. Individual foraging components of harvester ants: movement patterns and seed patch fidelity. Insectes Soc 1991; 38:379 - 96; http://dx.doi.org/10.1007/BF01241873
  • Fritz H, Said S, Weimerskirch H. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird. Proc Biol Sci 2003; 270:1143 - 8; http://dx.doi.org/10.1098/rspb.2003.2350; PMID: 12816652
  • Root RB, Kareiva PM. The Search for Resources by Cabbage Butterflies (Pieris Rapae): Ecological Consequences and Adaptive Significance of Markovian Movements in a Patchy Environment. Ecology 1984; 65:147 - 65; http://dx.doi.org/10.2307/1939467
  • Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 2010; 40:29 - 39; http://dx.doi.org/10.1016/j.nbd.2010.05.026; PMID: 20561920
  • Sang T-K, Jackson GR. Drosophila models of neurodegenerative disease. NeuroRx 2005; 2:438 - 46; http://dx.doi.org/10.1602/neurorx.2.3.438; PMID: 16389307
  • Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 2009; 583:1586 - 92; http://dx.doi.org/10.1016/j.febslet.2009.04.019; PMID: 19379745
  • Jahn TR, Kohlhoff KJ, Scott M, Tartaglia GG, Lomas DA, Dobson CM, et al. Detection of early locomotor abnormalities in a Drosophila model of Alzheimer’s disease. J Neurosci Methods 2011; 197:186 - 9; http://dx.doi.org/10.1016/j.jneumeth.2011.01.026; PMID: 21315762
  • Slawson JB, Kim EZ, Griffith LC. High-resolution video tracking of locomotion in adult Drosophila melanogaster. J Vis Exp 2009; http://dx.doi.org/10.3791/1096; PMID: 19390509
  • Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, et al. GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 2004; 9:522 - 30; http://dx.doi.org/10.1038/sj.mp.4001483; PMID: 14993907
  • Xu K, Bogert BA, Li W, Su K, Lee A, Gao F-B. The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol 2004; 14:1025 - 34; http://dx.doi.org/10.1016/j.cub.2004.05.055; PMID: 15202995
  • Ainsley JA, Pettus JM, Bosenko D, Gerstein CE, Zinkevich N, Anderson MG, et al. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 2003; 13:1557 - 63; http://dx.doi.org/10.1016/S0960-9822(03)00596-7; PMID: 12956960
  • Wang JW, Sylwester AW, Reed D, Wu DA, Soll DR, Wu CF. Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis. J Neurogenet 1997; 11:231 - 54; http://dx.doi.org/10.3109/01677069709115098; PMID: 10876655
  • Gomez-Marin A, Stephens GJ, Louis M. Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2011; 2; http://dx.doi.org/10.1038/ncomms1455; PMID: 21863008
  • Sokolowski MB. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet 1980; 10:291 - 302; http://dx.doi.org/10.1007/BF01067774; PMID: 6783027
  • Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB. Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 2008; 11:187 - 99; http://dx.doi.org/10.1038/nn2031; PMID: 18157126
  • Suster ML, Bate M. Embryonic assembly of a central pattern generator without sensory input. Nature 2002; 416:174 - 8; http://dx.doi.org/10.1038/416174a; PMID: 11894094
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 2008; 104:1433 - 9; http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x; PMID: 18088381
  • Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2006; 9:Suppl 309 - 17; PMID: 16914869
  • Soil DR. The use of computers in understanding how animal cells crawl. Int Rev Cytol 1995; 163:43 - 104; http://dx.doi.org/10.1016/S0074-7696(08)62209-3; PMID: 8522423
  • Wang JW, Sylwester AW, Reed D, Wu DA, Soll DR, Wu CF. Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis. J Neurogenet 1997; 11:231 - 54; http://dx.doi.org/10.3109/01677069709115098; PMID: 10876655
  • Caldwell JC, Miller MM, Wing S, Soll DR, Eberl DF. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants. Proc Natl Acad Sci U S A 2003; 100:16053 - 8; http://dx.doi.org/10.1073/pnas.2535546100; PMID: 14673076
  • Lee A, Li W, Xu K, Bogert BA, Su K, Gao F-B. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003; 130:5543 - 52; http://dx.doi.org/10.1242/dev.00792; PMID: 14530299
  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MG, Raposo EP, Stanley HE. Optimizing the success of random searches. Nature 1999; 401:911 - 4; http://dx.doi.org/10.1038/44831; PMID: 10553906
  • Papadopoulou D, Bianchi MW, Bourouis M. Functional studies of shaggy/glycogen synthase kinase 3 phosphorylation sites in Drosophila melanogaster. Mol Cell Biol 2004; 24:4909 - 19; http://dx.doi.org/10.1128/MCB.24.11.4909-4919.2004; PMID: 15143183
  • Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 1993; 74:291 - 8; http://dx.doi.org/10.1016/0092-8674(93)90420-U; PMID: 7688265
  • Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007; 8:194 - 205; http://dx.doi.org/10.1038/nrn2056; PMID: 17311006
  • Gould TD, Picchini AM, Einat H, Manji HK. Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders. Curr Drug Targets 2006; 7:1399 - 409; PMID: 17100580
  • Jope RS, Roh MS. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets 2006; 7:1421 - 34; PMID: 17100582
  • Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol 2008; 153:Suppl 1 S428 - 37; http://dx.doi.org/10.1038/bjp.2008.2; PMID: 18311157
  • Yang W, Leystra-Lantz C, Strong MJ. Upregulation of GSK3beta expression in frontal and temporal cortex in ALS with cognitive impairment (ALSci). Brain Res 2008; 1196:131 - 9; http://dx.doi.org/10.1016/j.brainres.2007.12.031; PMID: 18221734
  • Siegfried E, Chou TB, Perrimon N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992; 71:1167 - 79; http://dx.doi.org/10.1016/S0092-8674(05)80065-0; PMID: 1335365
  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118:401 - 15; PMID: 8223268
  • Weaver C, Leidel C, Szpankowski L, Farley N, Shubeita GT, Goldstein LSB. Endogenous GSK-3/Shaggy regulates bidirectional axonal transport of the Amyloid Precursor Protein. submitted
  • Carhan A, Reeve S, Dee CT, Baines RA, Moffat KG. Mutation in slowmo causes defects in Drosophila larval locomotor behaviour. Invert Neurosci 2004; 5:65 - 75; http://dx.doi.org/10.1007/s10158-003-0028-y; PMID: 14673704
  • Godoy-Herrera R, Burnet B, Connolly K, Gogarty J. The development of locomotor activity in Drosophila melanogaster larvae. Heredity 1984; 52:63 - 75; http://dx.doi.org/10.1038/hdy.1984.7
  • Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, et al. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 2010; 465:1066 - 9; http://dx.doi.org/10.1038/nature09116; PMID: 20531470
  • Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED, Norose K, et al. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 2012; 486:545 - 8; http://dx.doi.org/10.1038/nature11098; PMID: 22722867
  • Chuang DM, Manji HK. In search of the Holy Grail for the treatment of neurodegenerative disorders: has a simple cation been overlooked?. Biol Psychiatry 2007; 62:4 - 6; http://dx.doi.org/10.1016/j.biopsych.2007.04.008; PMID: 17572175
  • Huang HC, Klein PS. Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer’s disease. Curr Drug Targets 2006; 7:1389 - 97; PMID: 17100579
  • Anholt RR, Mackay TF. Quantitative genetic analyses of complex behaviours in Drosophila. Nat Rev Genet 2004; 5:838 - 49; http://dx.doi.org/10.1038/nrg1472; PMID: 15520793
  • Carter BC, Shubeita GT, Gross SP. Tracking single particles: a user-friendly quantitative evaluation. Phys Biol 2005; 2:60 - 72; http://dx.doi.org/10.1088/1478-3967/2/1/008; PMID: 16204858

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.