Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 4, 2013 - Issue 1
2,395
Views
28
CrossRef citations to date
0
Altmetric
Perspective

Biotech crops

Imperative for achieving the Millenium Development Goals and sustainability of agriculture in the climate change era

&
Pages 1-9 | Published online: 16 Nov 2012

References

  • Evans A. The feeding of the nine billion: Global food security for the 21st Century (Chatham House Report). London: Chatham House, The Royal Institute of International Affairs, 2009.
  • Fischer R, Byerlee D, Edmeades G. Can technology deliver on the yield challenge to 2050? Expert Meeting on How to feed the World in 2050. Rome, Italy: Food and Agriculture Organization of the United Nations, 2009.
  • Msangi S, Rosegrant M. World agriculture in a dynamically-changing environment: IFPRI's long term outlook for food and agriculture under additional demand and constraints. High Level Expert Forum on How to Feed the World in 2050. Rome, Italy, 2009.
  • van der Mensbrugghe D, Osorio-Rodarte I, Burns A, Baffes J. Macroeconomic environment, markets: A longer term outlook. High Level Expert Forum on How to Feed the World in 2050. Rome, Italy: Food and Agriculture Organization of the United Nations, 2009.
  • Ivanic M, Martin W. Implications of higher global food prices for poverty in low-income countries. Agric Econ 2008; 39:405 - 16; http://dx.doi.org/10.1111/j.1574-0862.2008.00347.x
  • UNDG. Thematic papers on the Millennium Development Goals. New York: United Nations Development Group, 2010.
  • UNDP. The path to achieving the Millennium Development Goals: A synthesis of MDG evidence from around the world. New York: United Nations Development Programme, 2010.
  • Christiaensen L, Demery L, Kuhl J. The (evolving) role of agriculture in poverty reduction—An empirical perspective. J Dev Econ 2011; 96:239 - 54; http://dx.doi.org/10.1016/j.jdeveco.2010.10.006
  • FAO. Climate change and food security: A framework document. Rome: Food and Agricultural Organisation, 2008.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, 2007.
  • Nagarajan S, Nagarajan S. Abiotic tolerance and crop improvement. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, eds. Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Dordrecht: Springer Netherlands, 2010:1-11.
  • Deng XP, Shan L, Inanaga S, Inoue M. Water-saving approaches for improving wheat production. J Sci Food Agric 2005; 85:1379 - 88; http://dx.doi.org/10.1002/jsfa.2101
  • FAO. Crops and drops: Making the best use of water for agriculture. Rome, 2002.
  • Singh P, Bengtsson L. Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Processes 2004; 18:2363 - 85; http://dx.doi.org/10.1002/hyp.1468
  • Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005; 438:303 - 9; http://dx.doi.org/10.1038/nature04141; PMID: 16292301
  • Rees HG, Collins DN. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol Processes 2006; 20:2157 - 69; http://dx.doi.org/10.1002/hyp.6209
  • Larcher W. Physiological plant ecology: ecophysiology and stress physiology of functional groups. Berlin: Springer-Verlag, 2003.
  • Rizza F, Badeck FW, Cattivelli L, Lidestri O, Di Fonzo N, Stanca AM. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Sci 2004; 44:2127 - 37; http://dx.doi.org/10.2135/cropsci2004.2127
  • Treasury HM. Green biotechnology and climate change. EuropaBio, 2009.
  • Braun HJ, Brettell R. The role of international centers in enhancing cooperation in wheat improvement. Borlaug Global Rust Initiative - Technical Workshop. Ciudad Obregon, 2009.
  • Zeigler R. Rice and the Millennium Development Goals: the international rice research institute’s strategic plan 2007–2015. Paddy Water Environ 2007; 5:67 - 71; http://dx.doi.org/10.1007/s10333-007-0067-9
  • ICAR. Climate Change. Department of Agricultural Research and Education - ICAR, Annual Report 2008-09. Indian Council of Agricultural Research, 2009:16.
  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. Rockville, Maryland: American Society of Plant Physiologists, 2000.
  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000; 287:303 - 5; http://dx.doi.org/10.1126/science.287.5451.303; PMID: 10634784
  • Potrykus I. Nutritionally enhanced rice to combat malnutrition disorders of the poor. Nutr Rev 2003; 61:S101 - 4; http://dx.doi.org/10.1301/nr.2003.jun.S101-S104; PMID: 12908739
  • Raney T, Pingali P. Sowing a gene revolution. Sci Am 2007; 297:104 - 11; http://dx.doi.org/10.1038/scientificamerican0907-104; PMID: 17784631
  • Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA. Golden Rice is an effective source of vitamin A. Am J Clin Nutr 2009; 89:1776 - 83; http://dx.doi.org/10.3945/ajcn.2008.27119; PMID: 19369372
  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 1999; 17:282 - 6; http://dx.doi.org/10.1038/7029; PMID: 10096297
  • Lucca P, Hurrell R, Potrykus I. Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 2002; 21:Suppl 184S - 90S; PMID: 12071303
  • Shetty P. Incorporating nutritional considerations when addressing food insecurity. Food Secur 2009; 1:431 - 40; http://dx.doi.org/10.1007/s12571-009-0039-6
  • Stein AJ, Rodríguez-Cerezo E. International trade and the global pipeline of new GM crops. Nat Biotechnol 2010; 28:23 - 5; http://dx.doi.org/10.1038/nbt0110-23b; PMID: 20062032
  • James C. Global Status of Commercialized Biotech/GM Crops, 2009: Brief 41. ISAAA South Asia Office, 2009.
  • Chen S, Song T. Identification of haploids with high oil xenia effect in maize. Acta Agron Sin 2003; 29:587 - 90
  • Cuong BM, Kha LQ, Tam NTM. Genetic diversity of maize doubled haploid line nurseries in Vietnam and their potential for utilization in hybrid breeding. In: Pixley K, Zhang SH, eds. Proceedings of 9th Asian regional maize workshop. Beijing: China Agricultural Science and Technology Press, 2007:67-71.
  • Zhang S, Liu Z, Li D. Analysis of quantitative trait loci for grain quality of maize doubled haploid population. J Agric Univ Hebei 2008; 31:1 - 5
  • Stone R. Plant science. China plans $3.5 billion GM crops initiative. Science 2008; 321:1279; http://dx.doi.org/10.1126/science.321.5894.1279; PMID: 18772402
  • Brookes G, Barfoot P. Global impact of biotech crops: environmental effects, 1996-2010. GM Crops Food 2012; 3:129 - 37; PMID: 22534352
  • James C. Global Status of Commercialized Biotech/GM Crops: 2011. ISAAA South Asia Office, 2012.
  • Kimball BA, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 2002; 77:293 - 368; http://dx.doi.org/10.1016/S0065-2113(02)77017-X
  • Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 2005; 165:351 - 71; http://dx.doi.org/10.1111/j.1469-8137.2004.01224.x; PMID: 15720649
  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006; 312:1918 - 21; http://dx.doi.org/10.1126/science.1114722; PMID: 16809532
  • Rosenzweig C, Hillel D. Climate change and the global harvest. New York, USA: Oxford University Press, 1998.
  • Fawcett R, Towery D. Conservation tillage and plant biotechnology: How new technologies can improve the environment by reducing the need to plow. West Lafayette, IN, USA.: Conservation Technology Information Center, 2002.
  • Brimner TA, Gallivan GJ, Stephenson GR. Influence of herbicide-resistant canola on the environmental impact of weed management. Pest Manag Sci 2005; 61:47 - 52; http://dx.doi.org/10.1002/ps.967; PMID: 15593073
  • Kleter GA, Harris C, Stephenson G, Unsworth J. Comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe. Pest Manag Sci 2008; 64:479 - 88; http://dx.doi.org/10.1002/ps.1513; PMID: 18078305
  • May MJ, Champion GT, Dewar AM, Qi A, Pidgeon JD. Management of genetically modified herbicide-tolerant sugar beet for spring and autumn environmental benefit. Proc Biol Sci 2005; 272:111 - 9; http://dx.doi.org/10.1098/rspb.2004.2948; PMID: 15695200
  • Bonny S. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agronomy for Sustainable Development 2008; 28:21 - 32; http://dx.doi.org/10.1051/agro:2007044
  • Dun Z, Mitchell PD. Can conventional crop producers also benefit from Bt Technology?: Agricultural and Applied Economics Association, 2011.
  • Zahran HH. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 2001; 91:143 - 53; http://dx.doi.org/10.1016/S0168-1656(01)00342-X; PMID: 11566386
  • Saikia S, Jain V. Biological nitrogen fixation with non-legumes: An achievable target or a dogma?. Curr Sci India 2007; 92:317 - 22
  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 2008; 105:7564 - 9; http://dx.doi.org/10.1073/pnas.0801093105; PMID: 18495935
  • Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC. Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 2007; 150:107 - 24; http://dx.doi.org/10.1016/j.envpol.2007.06.030; PMID: 17706849
  • Brookes G, Barfoot P. GM crops: global socio-economic and environmental impacts 1996-2008. Dorchester, UK: PG Economics Ltd, 2010.
  • Ruan C-J, Shao H-B, Teixeira da Silva JA. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. Crit Rev Biotechnol 2012; 32:1 - 21; http://dx.doi.org/10.3109/07388551.2010.533119; PMID: 21699437
  • Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Lasco RD, et al. Generic methodologies applicable to multiple land-use categories. Agriculture, forestry and other land use: Intergovernmental Panel on Climate Change, 2006.
  • Glover J, Johnson H, Lizzio J, Wesley V, Hattersley P, Knight C. Australia's crops and pastures in a changing climate–can biotechnology help? Canberra, Australian: Australian Government Bureau of Rural Sciences, 2008:67.
  • Nicholas S. Stern review on the economics of climate change. Stern Review on the Economics of Climate Change, UK Treasury, 2006.
  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1 - 14; http://dx.doi.org/10.1007/s00425-003-1105-5; PMID: 14513379
  • Hong Z, Lakkineni K, Zhang Z, Verma DPS. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 2000; 122:1129 - 36; http://dx.doi.org/10.1104/pp.122.4.1129; PMID: 10759508
  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 2001; 127:910 - 7; http://dx.doi.org/10.1104/pp.010548; PMID: 11706173
  • Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 2009; 50:1260 - 76; http://dx.doi.org/10.1093/pcp/pcp082; PMID: 19546148
  • Hsieh T-H, Lee JT, Charng YY, Chan M-T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 2002; 130:618 - 26; http://dx.doi.org/10.1104/pp.006783; PMID: 12376629
  • Zhang HH, He XL. Effect of AM fungi on the protective system in leaves of Artemisia ordosica under drought stress. Biotechnol Bull 2007; 3:129 - 33
  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 2002; 99:7530 - 5; http://dx.doi.org/10.1073/pnas.112209199; PMID: 12032317
  • Van Camp W. Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 2005; 16:147 - 53; http://dx.doi.org/10.1016/j.copbio.2005.03.002; PMID: 15831379
  • Gómez-Barbero M, Berbel J, Rodríguez-Cerezo E. Bt corn in Spain--the performance of the EU’s first GM crop. Nat Biotechnol 2008; 26:384 - 6; http://dx.doi.org/10.1038/nbt0408-384; PMID: 18392015
  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis.. Cell 2010; 140:136 - 47; http://dx.doi.org/10.1016/j.cell.2009.11.006; PMID: 20079334
  • Hasanuzzaman M, Hossain MA, Silva JAT, Fujita M. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M, eds. Crop Stress and its Management: Perspectives and Strategies. Netherlands: Springer Netherlands, 2012:261-315.
  • Husaini AM. Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 2010; 29:97 - 110; http://dx.doi.org/10.1007/s00299-009-0801-4; PMID: 19956955
  • Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol 1992; 43:83 - 116; http://dx.doi.org/10.1146/annurev.pp.43.060192.000503
  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 1993; 90:1629 - 33; http://dx.doi.org/10.1073/pnas.90.4.1629; PMID: 8434026
  • Gupta AS, Webb RP, Holaday AS, Allen RD. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 1993; 103:1067 - 73; PMID: 12232001
  • Van Camp W, Capiau K, Van Montagu M, Inzé D, Slooten L. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 1996; 112:1703 - 14; http://dx.doi.org/10.1104/pp.112.4.1703; PMID: 8972606
  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K-I, Yokota A, et al. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 1998; 428:47 - 51; http://dx.doi.org/10.1016/S0014-5793(98)00483-9; PMID: 9645472
  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 2000; 41:1229 - 34; http://dx.doi.org/10.1093/pcp/pcd051; PMID: 11092907
  • Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 2002; 53:1331 - 41; http://dx.doi.org/10.1093/jexbot/53.372.1331; PMID: 11997379
  • Wang J, Zhang H, Allen RD. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 1999; 40:725 - 32; http://dx.doi.org/10.1093/oxfordjournals.pcp.a029599; PMID: 10501032
  • Roxas VP, Smith RK Jr., Allen ER, Allen RD. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 1997; 15:988 - 91; http://dx.doi.org/10.1038/nbt1097-988; PMID: 9335051
  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 2004; 121:231 - 8; http://dx.doi.org/10.1111/j.0031-9317.2004.00308.x; PMID: 15153190
  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci 2005; 24:23 - 58; http://dx.doi.org/10.1080/07352680590910410
  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 2005; 16:123 - 32; http://dx.doi.org/10.1016/j.copbio.2005.02.001; PMID: 15831376
  • Chinnusamy V, Zhu JK. Plant salt tolerance. Top Curr Genet 2003; 4:241 - 70; http://dx.doi.org/10.1007/978-3-540-39402-0_10
  • Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 2004; 55:225 - 36; http://dx.doi.org/10.1093/jxb/erh005; PMID: 14673035
  • Ruane J, Sonnino F, Steduro R, Deane C. Coping with water scarcity in developing countries: What role for agricultural biotechnologies. Land and water Discussion: Food and Agricultural organization (FAO), 2007:33.
  • CropGen. Regulated to Blindness and Death. London, UK: CropGen 2007; http://cropgen.org
  • Makinde D, Mumba L, Ambali A. Status of Biotechnology in Africa: Challenges and opportunities. Asian Biotechnol Dev Rev 2009; 11:1 - 10
  • Qaim M. The economics of genetically modified crops. Annu Rev Resour Econ 2009; 1:665 - 94; http://dx.doi.org/10.1146/annurev.resource.050708.144203
  • EFSA GMO Panel Working Group on Animal Feeding Trials. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 2008; 46:Suppl 1 S2 - 70; http://dx.doi.org/10.1016/j.fct.2008.02.008; PMID: 18328408
  • Taverne D. Thunderer: when crops burn, the truth goes up in smoke. Times (Lond) 2003;
  • Taverne D. The March of Unreason: Science, Democracy and the New Fundamentalism. Oxford, UK: Oxford University Press, 2005.
  • Europeon Commission Sponsored Research on Safety of Genetically Modified Organisms. Brussels, Belgium: European Commission, 2001.
  • ICSU. New Genetics, Food and Agriculture: Scientific Discoveries—Societal Dilemmas. Paris, France: International Council for Science, 2003. www.icsu.org
  • Morris SH. EU biotech crop regulations and environmental risk: a case of the emperor’s new clothes?. Trends Biotechnol 2007; 25:2 - 6; http://dx.doi.org/10.1016/j.tibtech.2006.11.004; PMID: 17113665
  • Steinfeld H, Gerber P, Wassenaar T, Castel V, de Haan C. Livestock's long shadow: environmental issues and options. FAO, 2006.
  • Pollock J. Green revolutionary. Technol Rev January/February 2008 http://technologyreview.com/biomedicine/19871
  • Avery A. The Truth About Organic Foods, pp 157–168. Chesterfield, MO, USA: Henderson Communications LLC, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.