1,296
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene

, , , &
Pages 132-138 | Received 15 Dec 2013, Accepted 17 Apr 2014, Published online: 09 Jul 2014

References

  • Dixon J, Braun HJ, Crouch JH. Transitioning wheat research to serve the future needs of the developing world, in: J. Dixon, H.-J. Braum, P. Kosina, J.H. Crouch (Eds.), Wheat Facts and Futures, CIMMYT, Mexico DF, Mexico, 2009. pp. 1–25.
  • Flowers TJ. Improving crop salt tolerance. J Exp Bot 2004; 55:307 - 19; http://dx.doi.org/10.1093/jxb/erh003; PMID: 14718494
  • Kebede B, Thiagarajah M, Zimmerli C, Rahman MH. Improvement of open pollinated spring rapeseed (B. napus) through introgression of genetic diversity from winter rapeseed. Crop Sci 2010; 50:1236 - 43; http://dx.doi.org/10.2135/cropsci2009.06.0352
  • Moghaieb REA, Abdel-Hadi AA, Talaat NB. Molecular markers associated with salt tolerance in Egyptian wheats. Afr J Biotechnol 2011; 10:18092 - 103
  • Silva P, Gerós H. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 2009; 4:718 - 26; http://dx.doi.org/10.4161/psb.4.8.9236; PMID: 19820346
  • Horie T, Schroeder JI. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 2004; 136:2457 - 62; http://dx.doi.org/10.1104/pp.104.046664; PMID: 15375202
  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 2004; 167:849 - 59; http://dx.doi.org/10.1016/j.plantsci.2004.05.034
  • Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 2001; 19:765 - 8; http://dx.doi.org/10.1038/90824; PMID: 11479571
  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens.. Plant Physiol 1997; 115:971 - 80; PMID: 12223854
  • Nadolska-Orczyk A, Przetakiewicz A, Kopera K, Binka A, Orczyk W. Efficient method of Agrobacterium-mediated transformation for triticale (x Triticosecale Wittmack). J Plant Growth Regul 2005; 24:2 - 10; http://dx.doi.org/10.1007/s00344-004-0046-y
  • Nadolska-Orczyk A, Orczyk W, Przetakiewicz A. Agrobacterium mediated transformation of cereals—from technique development to its application. Acta Physiol Plant 2000; 22:77 - 88; http://dx.doi.org/10.1007/s11738-000-0011-8
  • Wu H, Sparks CA, Jones HD. Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 2006; 18:195 - 208; http://dx.doi.org/10.1007/s11032-006-9027-0
  • Bartlett JG, Snape JW, Harwood WA. Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J 2009; 7:856 - 66; http://dx.doi.org/10.1111/j.1467-7652.2009.00448.x; PMID: 19781005
  • Bhalla PL. Genetic engineering of wheat--current challenges and opportunities. Trends Biotechnol 2006; 24:305 - 11; http://dx.doi.org/10.1016/j.tibtech.2006.04.008; PMID: 16682090
  • Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 2006; 4:575 - 603; http://dx.doi.org/10.1111/j.1467-7652.2006.00209.x; PMID: 17309731
  • Rohini VK, Rao KS. Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 2000; 150:41 - 9; http://dx.doi.org/10.1016/S0168-9452(99)00160-0
  • Rakoczy-Trojanowska M. The effects of growth regulators on somaclonal variation in rye (Secale cereale L.) and selection of somaclonal variants with increased agronomic traits. Cell Mol Biol Lett 2002; 7:1111 - 20; PMID: 12511978
  • Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.. Science 1999; 285:1256 - 8; http://dx.doi.org/10.1126/science.285.5431.1256; PMID: 10455050
  • Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 2001; 19:765 - 8; http://dx.doi.org/10.1038/90824; PMID: 11479571
  • Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 2001; 98:12832 - 6; http://dx.doi.org/10.1073/pnas.231476498; PMID: 11606781
  • Banjara M, Zhu L, Shen G, Payton P, Zhang H. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol. Rep. 2012; 6:59 - 67; http://dx.doi.org/10.1007/s11816-011-0200-5
  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 2005; 46:1848 - 54; http://dx.doi.org/10.1093/pcp/pci201; PMID: 16179357
  • Duan X, Song Y, Yang A, Zhang J. The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 2009; 135:281 - 95; http://dx.doi.org/10.1111/j.1399-3054.2008.01194.x; PMID: 19236662
  • Tian L, Huang C, Yu R, Liang R, Li Z, Zhang L, Wang Y, Zhang X, Wu Z. Overexpression of AtNHX1 confers salt-tolerance of transgenic tall fescue. Afr J Biotechnol 2006; 5:1041 - 4
  • Xu K, Hong P, Luo L, Xia T. Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thaliana, in Petunia hybrid enhances salt and drought tolerance. J Plant Biol 2009; 52:453 - 61; http://dx.doi.org/10.1007/s12374-009-9058-2
  • Li TX, Zhang Y, Liu H, Wu YT, Li WB, Zhang HX. Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 2010; 55:1127 - 34; http://dx.doi.org/10.1007/s11434-010-0092-8
  • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987; 6:3901 - 7; PMID: 3327686
  • Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 1985; 5:69 - 76; http://dx.doi.org/10.1007/BF00020088; PMID: 24306565
  • Maxwell SE, Delaney HD. Designing Experiments and Analyzing Data, 1989, pp. 241-260, Wadsworth, Belmont, CA, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.