4,167
Views
34
CrossRef citations to date
0
Altmetric
Review

Challenges of climate change

Omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production

Pages 97-105 | Received 27 Nov 2013, Accepted 02 Jun 2014, Published online: 09 Jul 2014

References

  • Husaini AM, Tuteja N. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era. GM Crops Food 2013; 4:1 - 9; http://dx.doi.org/10.4161/gmcr.22748; PMID: 23160541
  • Husaini AM, Hassan B, Ghani MY, Teixeira da Silva JA, Kirmani NA. Saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. In: Husaini AM (Ed) Saffron. Functional Plant Science and Biotechnology 2010; 4 (Special Issue 2), 108-115.
  • Munshi AM, Wani SA, Tak GM. Improved cultivation practices for saffron. In: Proceedings of Seminar-cum-Workshop on Saffron (Crocus sativus), June 14, 2001. SKUAST-K, India, 2002; pp 83-88.
  • Dhar AK, Mir GM. Saffron in Kashmir-VI: A review of distribution and production. J Herbs Spices Med Plants 1997; 4:83 - 90; http://dx.doi.org/10.1300/J044v04n04_09
  • Caiola MG, Canini A. Looking for Saffron’s (Crocus sativus L.) Parents. In: In: Husaini AM (Ed) Saffron. Functional Plant Science and Biotechnology 2010; 4 (SI-2):1-14.
  • Gómez-Gómez L, Rubio-Moraga Á, Ahrazem O. Understanding Carotenoid Metabolism in Saffron Stigmas. Unravelling Aroma and Colour Formation. Funct. Plant Sci Biotechnol. 2010; 4:56 - 63
  • Yasmin S, Nehvi FA. Saffron as a valuable spice: A comprehensive review. African Journal of Agricultural Research 2013; 8:234 - 42
  • Premkumar K, Ramesh A. Anticancer, Antimutagenic and Antioxidant Potential of Saffron: An Overview of Current Awareness and Future Perspectives. Funct Plant Sci Biotechnol 2010; 4:91 - 7
  • Anastasaki EG, et al. In Proceedings of 3rd International Symposium on Saffron: Forthcoming Challenges in Cultivation, Research and Economics, Krokos, Kozani, Greece, 2009.
  • Husaini AM, ed. Saffron, Global Science Books, Ltd, UK, 2010, p. 135.
  • Kanth RH, Khanday BA, Tabassum S. Crop weather relationship for saffron production. In: Nehvi FA, Wani SA (Eds) Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India, 2008; 170-188.
  • Nazir NA, Khitrov NB, Chizhikova NP. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci 1996; 28:120 - 38
  • Ganai MRD, Wani MA, Zargar GH. Characterisation of saffron growing soils of Kashmir. Applied Biological Research 2000; 2:27 - 30
  • Ganai MRD. Nutrient status of saffron soils and their management. In: Proceedings of Seminar-cum-Workshop on Saffron (Crocus sativus), June 14, 2001. SKUAST-K, India, 2002; 51-54.
  • Husaini AM, Bhat MA, Kamili AN, Mir MA. Kashmir saffron in crisis. Curr Sci 2013; 104:686 - 7
  • Nehvi FA, Lone AA, Allai BA, Yasmin S. Impact of climate change on saffron industry of Jammu and Kashmir. Crop Improvement 2010; 37:203
  • Hassan B, Shah MH. Increased sustainability and yield of saffron in Kashmir. In: Proceedings of Seminar-cum-Workshop on Saffron (Crocus sativus), June 14, 2001. SKUAST-K, India, 2002; 55-58.
  • Srivastava RP. Cultivation of saffron in India. Fertilizer News 1963; 8:9 - 16
  • Kamili AS, Nehvi FA, Trag AR. Saffron - a legendary crop of Kashmir Himalaya. Journal of Himalayan Ecology and Sustainable Development 2007; 2:1 - 12
  • Alam A. Status and prospects of mechanisation in saffron cultivation in Kashmir. Acta Hortic 2007; 739:383 - 8
  • Madan CL, Kapoor BM, Gupta US. Saffron. Econ Bot 1967; 20:377 - 85; http://dx.doi.org/10.1007/BF02904059
  • Thakur RN, Singh C, Kaul BL. First report of corm rot in Crocus sativus L. Indian Phytopathology 1992; 45:278 - 82
  • Dhar AK. Bio-ecology and control of corm rot of saffron (Crocus sativus L.). MSc thesis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 1992; 109 pp.
  • Wani A. Studies on corm rot of saffron (Crocus sativus L.). PhD thesis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 2004; 108 pp.
  • Ahmad M, Sagar V. Integrated management of corm/tuber rot of saffron and Kalazeera. Horticulture Mini Mission-1, Indian Council for Agricultural Research (ICAR), India, 2007; 22 pp.
  • Kalha CS, Gupta V, Gupta D. First report of sclerotial rot of saffron caused by Sclerotium rolfsii in India. Plant Dis 2007; 91:1203 - 6; http://dx.doi.org/10.1094/PDIS-91-9-1203B
  • Ghani MY. Corm rot disease of saffron and its management. In: Proceedings of Seminar-cum-Workshop on Saffron (Crocus sativus), June 14, 2001. SKUAST-K, India, 2002; pp 107-112.
  • Sud AK, Paul YS, Thakur BR. Corm rot of saffron and its management. Journal of Mycology and Plant Pathology 1999; 29:380 - 2
  • Pir FA, Nehvi FA, Singh KN, Hassan B, Khanday BA, Mir ZA. Saffron weed flora of Kashmir. In: Nehvi FA, Wani SA (Eds) Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India, 2008; pp 189-200.
  • Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2:7; http://dx.doi.org/10.1186/1471-2210-2-7; PMID: 11914135
  • Castillo R, Gomez G, Fernandez JA. SafchiA is a new class of defence chitinase from saffron (Crocus sativus L.). Acta Hortic 2007; 739:195 - 202
  • López RC, Gómez-Gómez L. Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiol Biochem 2009; 47:426 - 34; http://dx.doi.org/10.1016/j.plaphy.2009.01.007; PMID: 19246207
  • Nk C, Koul KK, Farooq S. Phenolic compounds in corm of saffron crocus (Crocus sativus L.) during bud development. Plant Physiol Biochem 1986; 13:78 - 81
  • Ebrahimzadeh H, Abrishamchi P, Noori-Daloii MR. Study on ontogenetic changes in Crocus sativus by study phenolics and phenol oxidases in the corm and bud tissues. Journal of Sciences of the Islamic Republic of Iran 1997; 8:81 - 5
  • Keyhani E, Keyhani J. Hypoxia/anoxia as signaling for increased alcohol dehydrogenase activity in saffron (Crocus sativus L.) corm. Ann N Y Acad Sci 2004; 1030:449 - 57; http://dx.doi.org/10.1196/annals.1329.056; PMID: 15659829
  • Keyhani E, Ghamsari L, Keyhani J, Hadizadeh M. Antioxidant enzymes during hypoxia-anoxia signaling events in Crocus sativus L. corm. Ann N Y Acad Sci 2006; 1091:65 - 75; http://dx.doi.org/10.1196/annals.1378.055; PMID: 17341603
  • D’Agostino N, Pizzichini D, Chiusano ML, Giuliano G. An EST database from saffron stigmas. BMC Plant Biol 2007; 7:53; http://dx.doi.org/10.1186/1471-2229-7-53; PMID: 17925031
  • Molina RV, Garcia-Luis A, Coll V, Ferrer C, Valero M, Navarro Y, Guardiola JL. Flower formation in the saffron crocus (Crocus sativus L.)- The role of temperature. Acta Hortic 2004; 650:39 - 47
  • Molina RV, Valero M, Navarro Y, Garci’a-Luis A, Guardiola JL. Low temperature storage of corms extends the flowering season of saffron (Crocus sativus L.). J Hortic Sci Biotechnol 2005; 80:319 - 26
  • Milyaeva EL, Azizbekova NSH. Cytophysiological changes in the course of development of stem apices of saffron crocus. Soviet Plant Physiology 1978; 25:227 - 33
  • Halevy AH. Recent advances in control of flowering and growth habit of geophytes. Acta Hortic 1990; 266:35 - 42
  • Husaini AM, Wani SA, Sofi P, Rather AG, Mir JI. Bioinformatics for Saffron (Crocus sativus L.) Improvement. Communications in Biometry and Crop Science 2009; 4:1 - 6
  • Husaini AM, Ashraf N. Understanding Saffron biology using bioinformatics tools. In: Husaini AM (Ed) Saffron. Functional Plant Science and Biotechnology 2010; 4 (Special Issue 2):31-37.
  • Husaini AM, Kamili AN, Wani MH, Teixeira da Silva JA, Bhat GN. Sustainable Saffron (Crocus sativus Kashmirianus) Production: Technological and Policy Interventions for Kashmir. In: Husaini AM (Ed) Saffron. Functional Plant Science and Biotechnology 2010; 4 (Special Issue 2):116-127.
  • Guillemin JP, Gianinazzi S, Trouvelot A. Screening of arbuscular endomycorrhizal fungi for establishment of micropropagated pineapple plants. Agronomie 1992; 12:831 - 6; http://dx.doi.org/10.1051/agro:19921016
  • Hooker JE, Gianinazzi S, Vestberg M, Barea JM, Atkinson D. The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical inputs. Agr Sci Finland 1994; 3:227 - 32
  • Dodd JC. The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems. Outlook Agric 2000; 29:55; http://dx.doi.org/10.5367/000000000101293059
  • Borkowska B. Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol Plant 2002; 24:365 - 70; http://dx.doi.org/10.1007/s11738-002-0031-7
  • Yin B, Wang Y, Liu P, Hu J, Zhen W. Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress. Front Agric China 2010; 4:165 - 9; http://dx.doi.org/10.1007/s11703-010-0109-8
  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C. Microbial co-operation in the rhizosphere. J Exp Bot 2005; 56:1761 - 78; http://dx.doi.org/10.1093/jxb/eri197; PMID: 15911555
  • Swaine E, Swaine M, Killham K. Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings of different provenances. Agrofor Syst 2007; 69:135 - 45; http://dx.doi.org/10.1007/s10457-006-9025-6
  • Mnasri B, Aouani ME, Mhamdi R. Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 2007; 39:1744 - 50; http://dx.doi.org/10.1016/j.soilbio.2007.01.030
  • Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 2006; 60:389 - 404; http://dx.doi.org/10.1007/s11103-005-4210-y; PMID: 16514562
  • Tyerman SD, Niemietz CM, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 2002; 25:173 - 94; http://dx.doi.org/10.1046/j.0016-8025.2001.00791.x; PMID: 11841662
  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R. Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 2007; 68:122 - 9; http://dx.doi.org/10.1016/j.phytochem.2006.09.033; PMID: 17109903
  • Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003; 255:571 - 86; http://dx.doi.org/10.1023/A:1026037216893
  • Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 2012; 28:1327 - 50; http://dx.doi.org/10.1007/s11274-011-0979-9; PMID: 22805914
  • Glick B. The enhancement of plant growth by freeliving bacteria. Microbiology 1995; 41:109 - 17
  • Lalande R, Bissonnette N, Coutlee D, Antoun H. Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 1989; 115:7 - 11; http://dx.doi.org/10.1007/BF02220688
  • Strzelczyk E, Pokojska-Burdziej A. Production of auxins and gibberellin like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and mycorhizosphere of pine (PinussilvestrisL.). Plant Soil 1984; 81:185 - 94; http://dx.doi.org/10.1007/BF02197150
  • Lynch JM. Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In: Soil Organic Matter and Biol. Activity. Eds. Vaughan D and Malcom RE. Martinus Nijhoff/Dr. W. Junk Publishers. Dordrecht, Boston, Lan Lancaster. 1985; pp. 151-174.
  • Ahemad M, Khan MS. Functional aspects of plant growth rhizobacteria: Recent advancements. Insight Microbial 2011; 1:39 - 54; http://dx.doi.org/10.5567/IMICRO-IK.2011.39.54
  • Chincholkar SB, Chaudhari BL, Rane MR. Microbial Siderophores: State of art. In: Microbial Siderophores. Chincholkar, S. B. and Varma, A. (eds.) Springer Verlag, Germany. 2007; pp. 233-242.
  • De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 1999; 12:450 - 8; http://dx.doi.org/10.1094/MPMI.1999.12.5.450; PMID: 10226378
  • Sharaf-Eldin M, Elkholy S, Fernández JA, Junge H, Cheetham R, Guardiola J, Weathers P. Bacillus subtilis FZB24 affects flower quantity and quality of saffron (Crocus sativus). Planta Med 2008; 74:1316 - 20; http://dx.doi.org/10.1055/s-2008-1081293; PMID: 18622904
  • Parray JA, Kamili AN, Reshi ZA, Hamid R, Qadri RA. Screening of beneficial properties of rhizobacteria isolated from Saffron (Crocus sativus L) rhizosphere. Afr J Microbiol Res 2013; 7:2905 - 10
  • Ambardar S, Vakhlu J. Plant growth promoting bacteria from Crocus sativus rhizosphere. World J Microbiol Biotechnol 2013; 29:2271 - 9; http://dx.doi.org/10.1007/s11274-013-1393-2; PMID: 23749248
  • Gai JP, Christie P, Feng G, Li XL. Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza 2006; 16:229 - 39; http://dx.doi.org/10.1007/s00572-005-0023-8; PMID: 16284782
  • Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003; 13:309 - 17; http://dx.doi.org/10.1007/s00572-003-0237-6; PMID: 12690537
  • Wu Q-S, Xia R-X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 2006; 163:417 - 25; http://dx.doi.org/10.1016/j.jplph.2005.04.024; PMID: 16455355
  • Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N. Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic (Amsterdam) 2007; 114:11 - 5; http://dx.doi.org/10.1016/j.scienta.2007.05.012
  • Porcel R, Azcón R, Ruiz-Lozano JM. Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant 2004; 65:211 - 221; http://dx.doi.org/10.1016/j.pmpp.2005.02.003
  • Porcel R, Azcón R, Ruiz-Lozano JM. Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 2005; 56:1933 - 42; http://dx.doi.org/10.1093/jxb/eri188; PMID: 15911559
  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R. Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 2001; 52:2241 - 2; PMID: 11604465
  • Wu QS, Zou YN, Xia RX. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 2006; 42:166 - 72; http://dx.doi.org/10.1016/j.ejsobi.2005.12.006
  • Lambais MR, Ríos-Ruiz WF, Andrade RM. Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 2003; 160:421 - 8; http://dx.doi.org/10.1046/j.1469-8137.2003.00881.x
  • Wu QS, Xia RX, Zou YN. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 2006; 163:1101 - 10; http://dx.doi.org/10.1016/j.jplph.2005.09.001; PMID: 17032615
  • Sylvia DM, Williams SE. Vesicular-arbuscular mycorrhizae and environmental stress. ASA Spec Publ 1992; 54:101 - 24
  • Al-Karaki G. Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 1998; 8:41 - 5; http://dx.doi.org/10.1007/s005720050209
  • Li M, Jiang DF, Meng XX, Liu RJ, Li XL. Effects of arbuscular mycorrhizal fungi on growth, yield and quality of Phaseolus vulgaris L. in field. Chinese J Eco-Agr 1999; 7:43 - 6
  • Liang J, Zhang Y, Jia XZ, Lv Q, Zhang XY. Effects of ectomycorrhizae on growth and resistance of poplar. J Nanjing Forest Univ 2003; 27:39 - 43
  • Lu JY, Mao YM, Shen LY, Peng SQ, Li XL. Effects of VA mycorrhizal fungi inoculated on drought tolerance of wild jujube (Zizyphus spinosus Hu) seedlings. Acta Hort Sin 2003; 30:29 - 33
  • Zhang HS, He XL. Effect of AM fungal on the protective system in leaves of Artemisia ordosica under drought stress. Biotechnol Bull 2007; 3:129 - 33
  • Wu QS, Xia RX. Research and application on vesicular-arbuscular mycorrhiza of fruit frees. Plant Physiol Co 2003; 39:536 - 40
  • Wu QS, Zou YN, Wang GY. Effect of inoculation with arbuscular mycorrhizal fungal on citrus under water stress conditions. [Nat Sci Edit] J Yangtze Univ 2007; 4:18 - 21
  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG. Vesicular arbuscular mycorrhiza-an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Academic Publisher, Netherlands, 1996; pp 1-39.
  • Mosse B, Hepper C. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 1975; 5:215 - 23; http://dx.doi.org/10.1016/0048-4059(75)90088-0
  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Btehorn B, Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 1998; 90:896 - 903; http://dx.doi.org/10.2307/3761331
  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 2005; 102:13386 - 91; http://dx.doi.org/10.1073/pnas.0504423102; PMID: 16174735
  • Sherameti I, Tripathi S, Varma A, Oelmüller R. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 2008; 21:799 - 807; http://dx.doi.org/10.1094/MPMI-21-6-0799; PMID: 18624643
  • Pekan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 2004; 122:465 - 77; http://dx.doi.org/10.1111/j.1399-3054.2004.00424.x
  • Oelmüller R, Pekan-Berghöfer T, Shahollari B, Trebicka A, Sherameti I, Varma A. MATH domain proteins represent a novel protein family in Arabidopsis thaliana, and at least one member is modified in roots during the course of a plant-microbe interaction. Physiol Plant 2005; 124:152 - 66; http://dx.doi.org/10.1111/j.1399-3054.2005.00505.x
  • Shahollari B, Varma A, Oelmüller R. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 2005; 162:945 - 58; http://dx.doi.org/10.1016/j.jplph.2004.08.012; PMID: 16146321
  • Hill TW, Kafer E. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genet Newsl 2001; 48:20 - 1
  • Pham GH, Singh AN, Malla R, Kumari R, Prasad R, Sachdev M, Rexer K-H, Kost G, Luis P, Kaldorf M, et al. Interaction of Piriformospora indica with diverse microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer-Verlag New York, 2004; pp 237-265.
  • Varma A, Savita Verma, Sudha NS, Sahay N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 1999; 65:2741 - 4; PMID: 10347070
  • Das A, Varma A. Symbiosis: The art of living. In: Varma A, Kharkwal AC (eds) Symbiotic fungi: Soil biology. Springer-Verlag, Berlin, 2009; pp 1-28.
  • Oelmüller R, Sherameti I, Tripathi S, Varma A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 2009; 49:1 - 17; http://dx.doi.org/10.1007/s13199-009-0009-y
  • Husaini AM, Rashid Z, Mir RU, Aquil B. Approaches for gene targeting and targeted gene expression in plants. GM Crops 2011; 2:150 - 62; http://dx.doi.org/10.4161/gmcr.2.3.18605; PMID: 22179193
  • Husaini AM, Abdin MZ, Parray GA, Sanghera GS, Murtaza I, Alam T, Srivastava DK, Farooqi H, Khan HN. Vehicles and ways for efficient nuclear transformation in plants. GM Crops 2010; 1:276 - 87; http://dx.doi.org/10.4161/gmcr.1.5.14660; PMID: 21844685
  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 2013; 9:39; http://dx.doi.org/10.1186/1746-4811-9-39; PMID: 24112467

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.