4,444
Views
102
CrossRef citations to date
0
Altmetric
Review

Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii

, , , , , , & show all
Pages 146-151 | Received 09 Aug 2013, Accepted 23 Dec 2013, Published online: 22 Jan 2014

References

  • Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:2141 - 6; http://dx.doi.org/10.1099/ijs.0.02241-0; PMID: 12508881
  • Jantzen E, Hofstad T. Fatty acids of Fusobacterium species: taxonomic implications. J Gen Microbiol 1981; 123:163 - 71; PMID: 7320695
  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9:313 - 23; http://dx.doi.org/10.1038/nri2515; PMID: 19343057
  • Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology 2009; 136:65 - 80; http://dx.doi.org/10.1053/j.gastro.2008.10.080; PMID: 19026645
  • Varela E, Manichanh C, Gallart M, Torrejón A, Borruel N, Casellas F, Guarner F, Antolin M. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther 2013; 38:151 - 61; http://dx.doi.org/10.1111/apt.12365; PMID: 23725320
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105:16731 - 6; http://dx.doi.org/10.1073/pnas.0804812105; PMID: 18936492
  • Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013; 16:255 - 61; http://dx.doi.org/10.1016/j.mib.2013.06.003; PMID: 23831042
  • Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012; 78:420 - 8; http://dx.doi.org/10.1128/AEM.06858-11; PMID: 22101049
  • Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 2012; 6:1578 - 85; http://dx.doi.org/10.1038/ismej.2012.5; PMID: 22357539
  • Khan MT, Browne WR, van Dijl JM, Harmsen HJ. How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer?. Antioxid Redox Signal 2012; 17:1433 - 40; http://dx.doi.org/10.1089/ars.2012.4701; PMID: 22607129
  • Rigottier-Gois L, Bourhis AG, Gramet G, Rochet V, Doré J. Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 2003; 43:237 - 45; http://dx.doi.org/10.1111/j.1574-6941.2003.tb01063.x; PMID: 19719684
  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65:4799 - 807; PMID: 10543789
  • Rochet V, Rigottier-Gois L, Rabot S, Doré J. Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples. J Microbiol Methods 2004; 59:263 - 70; http://dx.doi.org/10.1016/j.mimet.2004.07.012; PMID: 15369862
  • Wang RF, Cao WW, Cerniglia CE. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 1996; 62:1242 - 7; PMID: 8919784
  • Wang RF, Beggs ML, Robertson LH, Cerniglia CE. Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol Lett 2002; 213:175 - 82; http://dx.doi.org/10.1111/j.1574-6968.2002.tb11302.x; PMID: 12167534
  • Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 2003; 69:4320 - 4; http://dx.doi.org/10.1128/AEM.69.7.4320-4324.2003; PMID: 12839823
  • Suau A, Rochet V, Sghir A, Gramet G, Brewaeys S, Sutren M, Rigottier-Gois L, Doré J. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 2001; 24:139 - 45; http://dx.doi.org/10.1078/0723-2020-00015; PMID: 11403393
  • Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009; 11:2574 - 84; http://dx.doi.org/10.1111/j.1462-2920.2009.01982.x; PMID: 19601958
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al, MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59 - 65; http://dx.doi.org/10.1038/nature08821; PMID: 20203603
  • Aguirre de Cárcer D, Cuív PO, Wang T, Kang S, Worthley D, Whitehall V, Gordon I, McSweeney C, Leggett B, Morrison M. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J 2011; 5:801 - 9; http://dx.doi.org/10.1038/ismej.2010.177; PMID: 21124491
  • Hopkins MJ, Macfarlane GT, Furrie E, Fite A, Macfarlane S. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol Ecol 2005; 54:77 - 85; http://dx.doi.org/10.1016/j.femsec.2005.03.001; PMID: 16329974
  • Balamurugan R, Janardhan HP, George S, Chittaranjan SP, Ramakrishna BS. Bacterial succession in the colon during childhood and adolescence: molecular studies in a southern Indian village. Am J Clin Nutr 2008; 88:1643 - 7; http://dx.doi.org/10.3945/ajcn.2008.26511; PMID: 19064526
  • Wang M, Ahrné S, Antonsson M, Molin G. T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. J Microbiol Methods 2004; 59:53 - 69; http://dx.doi.org/10.1016/j.mimet.2004.06.002; PMID: 15325753
  • Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards CA, Corthier G, Doré J. Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. J Microbiol Methods 2006; 67:150 - 61; http://dx.doi.org/10.1016/j.mimet.2006.03.010; PMID: 16647148
  • van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol 2005; 71:6438 - 42; http://dx.doi.org/10.1128/AEM.71.10.6438-6442.2005; PMID: 16204576
  • Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98:229 - 38; http://dx.doi.org/10.1111/j.1651-2227.2008.01060.x; PMID: 19143664
  • Tomas J, Wrzosek L, Bouznad N, Bouet S, Mayeur C, Noordine ML, Honvo-Houeto E, Langella P, Thomas M, Cherbuy C. Primocolonization is associated with colonic epithelial maturation during conventionalization. FASEB J 2013; 27:645 - 55; http://dx.doi.org/10.1096/fj.12-216861; PMID: 23118025
  • Rezzonico E, Mestdagh R, Delley M, Combremont S, Dumas ME, Holmes E, Nicholson J, Bibiloni R. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model. Gut Microbes 2011; 2:307 - 18; http://dx.doi.org/10.4161/gmic.18754; PMID: 22157236
  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500:232 - 6; http://dx.doi.org/10.1038/nature12331; PMID: 23842501
  • Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 2013; 11:61; http://dx.doi.org/10.1186/1741-7007-11-61; PMID: 23692866
  • Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 2013; 7:1256 - 61; http://dx.doi.org/10.1038/ismej.2013.80; PMID: 23677008
  • Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 2007; 73:7435 - 42; http://dx.doi.org/10.1128/AEM.01143-07; PMID: 17890331
  • Swidsinski A, Loening-Baucke V, Vaneechoutte M, Doerffel Y. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis 2008; 14:147 - 61; http://dx.doi.org/10.1002/ibd.20330; PMID: 18050295
  • Swidsinski A, Loening-Baucke V, Verstraelen H, Osowska S, Doerffel Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 2008; 135:568 - 79; http://dx.doi.org/10.1053/j.gastro.2008.04.017; PMID: 18570896
  • Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009; 11:2112 - 22; http://dx.doi.org/10.1111/j.1462-2920.2009.01931.x; PMID: 19397676
  • Castillo M, Skene G, Roca M, Anguita M, Badiola I, Duncan SH, Flint HJ, Martín-Orúe SM. Application of 16S rRNA gene-targetted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibre. FEMS Microbiol Ecol 2007; 59:138 - 46; http://dx.doi.org/10.1111/j.1574-6941.2006.00204.x; PMID: 17004993
  • Bian G, Xie F, Su Y, Zhu W. [16S rRNA gene-based molecular methods to monitor clostridium cluster IV community in the colon of piglets]. Wei sheng wu xue bao =. Acta Microbiol Sin 2010; 50:1373 - 9
  • Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJ, Pérez Gutiérrez O, Smidt H, Kemp B, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013; 143:274 - 83; http://dx.doi.org/10.3945/jn.112.169672; PMID: 23325922
  • Oikonomou G, Teixeira AG, Foditsch C, Bicalho ML, Machado VS, Bicalho RC, Associations of Faecalibacterium Species with Health and Growth. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 2013; 8:e63157; http://dx.doi.org/10.1371/journal.pone.0063157; PMID: 23646192
  • Gong J, Forster RJ, Yu H, Chambers JR, Sabour PM, Wheatcroft R, Chen S. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol Lett 2002; 208:1 - 7; http://dx.doi.org/10.1111/j.1574-6968.2002.tb11051.x; PMID: 11934485
  • Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult Sci 2006; 85:1151 - 64; PMID: 16830854
  • Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C, Han Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol 2007; 59:147 - 57; http://dx.doi.org/10.1111/j.1574-6941.2006.00193.x; PMID: 17233749
  • Scupham AJ. Succession in the intestinal microbiota of preadolescent turkeys. FEMS Microbiol Ecol 2007; 60:136 - 47; http://dx.doi.org/10.1111/j.1574-6941.2006.00245.x; PMID: 17284250
  • Lund M, Bjerrum L, Pedersen K. Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR. Poult Sci 2010; 89:1217 - 24; http://dx.doi.org/10.3382/ps.2010-00653; PMID: 20460669
  • Gérard P, Brézillon C, Quéré F, Salmon A, Rabot S. Characterization of cecal microbiota and response to an orally administered lactobacillus probiotic strain in the broiler chicken. J Mol Microbiol Biotechnol 2008; 14:115 - 22; http://dx.doi.org/10.1159/000106090; PMID: 17957118
  • Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, Javanmard A, Muhammad Anas O, Yazid AM. Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus. Poult Sci 2010; 89:470 - 6; http://dx.doi.org/10.3382/ps.2009-00495; PMID: 20181862
  • Nava GM, Stappenbeck TS. Diversity of the autochthonous colonic microbiota. Gut Microbes 2011; 2:99 - 104; http://dx.doi.org/10.4161/gmic.2.2.15416; PMID: 21694499
  • Foglesong MA, Cruden DL, Markovetz AJ. Pleomorphism of fusobacteria isolated from the cockroach hindgut. J Bacteriol 1984; 158:474 - 80; PMID: 6144663
  • Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 2008; 105:2117 - 22; http://dx.doi.org/10.1073/pnas.0712038105; PMID: 18252821
  • Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 2011; 45:Suppl S120 - 7; http://dx.doi.org/10.1097/MCG.0b013e31822fecfe; PMID: 21992950
  • Gałecka M, Szachta P, Bartnicka A, Łykowska-Szuber L, Eder P, Schwiertz A. Faecalibacterium prausnitzii and Crohn’s disease - is there any connection?. Pol J Microbiol 2013; 62:91 - 5; PMID: 23829084
  • Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000; 66:1654 - 61; http://dx.doi.org/10.1128/AEM.66.4.1654-1661.2000; PMID: 10742256
  • Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810 - 7; http://dx.doi.org/10.1128/AEM.70.10.5810-5817.2004; PMID: 15466518
  • Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004; 91:915 - 23; http://dx.doi.org/10.1079/BJN20041150; PMID: 15182395
  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68:5186 - 90; http://dx.doi.org/10.1128/AEM.68.10.5186-5190.2002; PMID: 12324374
  • Sarbini SR, Kolida S, Gibson GR, Rastall RA. In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br J Nutr 2013; 109:1980 - 9; http://dx.doi.org/10.1017/S0007114512004205; PMID: 23116939
  • Sarbini SR, Kolida S, Naeye T, Einerhand A, Brison Y, Remaud-Simeon M, Monsan P, Gibson GR, Rastall RA. In vitro fermentation of linear and alpha-1,2-branched dextrans by the human fecal microbiota. Appl Environ Microbiol 2011; 77:5307 - 15; http://dx.doi.org/10.1128/AEM.02568-10; PMID: 21666027
  • Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 2008; 66:487 - 95; http://dx.doi.org/10.1111/j.1574-6941.2008.00520.x; PMID: 18537837
  • Benjdia A, Martens EC, Gordon JI, Berteau O. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J Biol Chem 2011; 286:25973 - 82; http://dx.doi.org/10.1074/jbc.M111.228841; PMID: 21507958
  • Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307:1955 - 9; http://dx.doi.org/10.1126/science.1109051; PMID: 15790854
  • Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, Calanni F, Brigidi P, Gibson GR, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother 2010; 65:2556 - 65; http://dx.doi.org/10.1093/jac/dkq345; PMID: 20852272
  • Dörffel Y, Swidsinski A, Loening-Baucke V, Wiedenmann B, Pavel M. Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohn’s disease and the effect of therapy. Inflamm Bowel Dis 2012; 18:1663 - 71; http://dx.doi.org/10.1002/ibd.21923; PMID: 22113988
  • Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004; 70:3575 - 81; http://dx.doi.org/10.1128/AEM.70.6.3575-3581.2004; PMID: 15184159
  • Clavel T, Fallani M, Lepage P, Levenez F, Mathey J, Rochet V, Sérézat M, Sutren M, Henderson G, Bennetau-Pelissero C, et al. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr 2005; 135:2786 - 92; PMID: 16317121
  • Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology 2012; 158:2870 - 7; http://dx.doi.org/10.1099/mic.0.061127-0; PMID: 22878397
  • Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One 2011; 6:e28654; http://dx.doi.org/10.1371/journal.pone.0028654; PMID: 22194876
  • Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, Whelan K. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 2010; 104:693 - 700; http://dx.doi.org/10.1017/S0007114510001030; PMID: 20346190
  • Shen Q, Zhao L, Tuohy KM. High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro. Eur J Nutr 2012; 51:693 - 705; http://dx.doi.org/10.1007/s00394-011-0248-6; PMID: 21952691
  • Fernando WM, Hill JE, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef Microbes 2010; 1:197 - 207; http://dx.doi.org/10.3920/BM2009.0027; PMID: 21831757
  • Hooda S, Boler BM, Serao MC, Brulc JM, Staeger MA, Boileau TW, Dowd SE, Fahey GC Jr., Swanson KS. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 2012; 142:1259 - 65; http://dx.doi.org/10.3945/jn.112.158766; PMID: 22649263
  • Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2010; 13:569 - 73; http://dx.doi.org/10.1097/MCO.0b013e32833b648e; PMID: 20508519
  • Jia W, Whitehead RN, Griffiths L, Dawson C, Waring RH, Ramsden DB, Hunter JO, Cole JA. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease?. FEMS Microbiol Lett 2010; 310:138 - 44; http://dx.doi.org/10.1111/j.1574-6968.2010.02057.x; PMID: 20695899
  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62:1112 - 21; http://dx.doi.org/10.1136/gutjnl-2012-303304; PMID: 23135760
  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294:1 - 8; http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x; PMID: 19222573
  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101:541 - 50; http://dx.doi.org/10.1017/S0007114508019880; PMID: 18590586
  • Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilán CG. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 2008; 74:4737 - 45; http://dx.doi.org/10.1128/AEM.00325-08; PMID: 18539803
  • Odamaki T, Xiao JZ, Iwabuchi N, Sakamoto M, Takahashi N, Kondo S, Miyaji K, Iwatsuki K, Togashi H, Enomoto T, et al. Influence of Bifidobacterium longum BB536 intake on faecal microbiota in individuals with Japanese cedar pollinosis during the pollen season. J Med Microbiol 2007; 56:1301 - 8; http://dx.doi.org/10.1099/jmm.0.47306-0; PMID: 17893165
  • Garrido D, Suau A, Pochart P, Cruchet S, Gotteland M. Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiol Lett 2005; 248:249 - 56; http://dx.doi.org/10.1016/j.femsle.2005.05.045; PMID: 15970400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.