3,947
Views
94
CrossRef citations to date
0
Altmetric
Special Focus Review

Metabolic tinkering by the gut microbiome

Implications for brain development and function

, , &
Pages 369-380 | Received 18 Oct 2013, Accepted 27 Mar 2014, Published online: 31 Mar 2014

References

  • Cummings JH. Short chain fatty acids in the human colon. Gut 1981; 22:763 - 79; http://dx.doi.org/10.1136/gut.22.9.763; PMID: 7028579
  • Rosenberg E, Zilber-Rosenberg I. Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today 2011; 93:56 - 66; http://dx.doi.org/10.1002/bdrc.20196; PMID: 21425442
  • Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, Gill N, Blanchet MR, Mohn WW, McNagny KM, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012; 13:440 - 7; http://dx.doi.org/10.1038/embor.2012.32; PMID: 22422004
  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489:242 - 9; http://dx.doi.org/10.1038/nature11552; PMID: 22972297
  • Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73:397 - 445; http://dx.doi.org/10.1016/j.pneurobio.2004.06.003; PMID: 15313334
  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118:511 - 21; http://dx.doi.org/10.1542/peds.2005-2824; PMID: 16882802
  • Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nature reviews. Gastroenterol Hepatol 2012; 9:565 - 76
  • Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, Rodríguez JM. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009; 75:965 - 9; http://dx.doi.org/10.1128/AEM.02063-08; PMID: 19088308
  • Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: a functional capacity analysis. BMC Microbiol 2013; 13:116; http://dx.doi.org/10.1186/1471-2180-13-116; PMID: 23705844
  • Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Rodríguez JM. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003; 143:754 - 8; http://dx.doi.org/10.1016/j.jpeds.2003.09.028; PMID: 14657823
  • Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 2012; 12:277 - 88; http://dx.doi.org/10.1016/j.chom.2012.08.003; PMID: 22980325
  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011; 334:670 - 4; http://dx.doi.org/10.1126/science.1212782; PMID: 22053049
  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108:3047 - 52; http://dx.doi.org/10.1073/pnas.1010529108; PMID: 21282636
  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558:263 - 75; http://dx.doi.org/10.1113/jphysiol.2004.063388; PMID: 15133062
  • Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36:305 - 12; http://dx.doi.org/10.1016/j.tins.2013.01.005; PMID: 23384445
  • Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10:735 - 42; http://dx.doi.org/10.1038/nrmicro2876; PMID: 23000955
  • Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci 2013; 70:55 - 69; http://dx.doi.org/10.1007/s00018-012-1028-z; PMID: 22638926
  • Korosi A, Baram TZ. Plasticity of the stress response early in life: mechanisms and significance. Dev Psychobiol 2010; 52:661 - 70; http://dx.doi.org/10.1002/dev.20490; PMID: 20862706
  • Monk C, Georgieff MK, Osterholm EA. Research review: maternal prenatal distress and poor nutrition - mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry 2013; 54:115 - 30; http://dx.doi.org/10.1111/jcpp.12000; PMID: 23039359
  • Herculano-Houzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One 2011; 6:e17514; http://dx.doi.org/10.1371/journal.pone.0017514; PMID: 21390261
  • Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 2008; 34:1054 - 63; http://dx.doi.org/10.1093/schbul/sbn096; PMID: 18682377
  • Hoek HW, Susser E, Buck KA, Lumey LH, Lin SP, Gorman JM. Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry 1996; 153:1637 - 9; PMID: 8942466
  • Neugebauer R, Hoek HW, Susser E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 1999; 282:455 - 62; http://dx.doi.org/10.1001/jama.282.5.455; PMID: 10442661
  • Brown AS, van Os J, Driessens C, Hoek HW, Susser ES. Further evidence of relation between prenatal famine and major affective disorder. Am J Psychiatry 2000; 157:190 - 5; http://dx.doi.org/10.1176/appi.ajp.157.2.190; PMID: 10671386
  • Rajilić-Stojanović M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9:2125 - 36; http://dx.doi.org/10.1111/j.1462-2920.2007.01369.x; PMID: 17686012
  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101:15718 - 23; http://dx.doi.org/10.1073/pnas.0407076101; PMID: 15505215
  • Mestdagh R, Dumas ME, Rezzi S, Kochhar S, Holmes E, Claus SP, Nicholson JK. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res 2012; 11:620 - 30; http://dx.doi.org/10.1021/pr200938v; PMID: 22053906
  • Tennant B, Malm OJ, Horowitz RE, Levenson SM. Response of germfree, conventional, conventionalized and E. coli monocontaminated mice to starvation. J Nutr 1968; 94:151 - 60; PMID: 4866341
  • Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488:621 - 6; http://dx.doi.org/10.1038/nature11400; PMID: 22914093
  • McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984; 39:338 - 42; PMID: 6320630
  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104:Suppl 2 S1 - 63; http://dx.doi.org/10.1017/S0007114510003363; PMID: 20920376
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3:289 - 306; http://dx.doi.org/10.4161/gmic.19897; PMID: 22572875
  • Shipman JA, Berleman JE, Salyers AA. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 2000; 182:5365 - 72; http://dx.doi.org/10.1128/JB.182.19.5365-5372.2000; PMID: 10986238
  • Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 2009; 106:5859 - 64; http://dx.doi.org/10.1073/pnas.0901529106; PMID: 19321416
  • Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108:Suppl 1 4554 - 61; http://dx.doi.org/10.1073/pnas.1000087107; PMID: 20847294
  • Ajslev TA, Andersen CS, Gamborg M, Sørensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond) 2011; 35:522 - 9; http://dx.doi.org/10.1038/ijo.2011.27; PMID: 21386800
  • Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999; 28:19 - 25; http://dx.doi.org/10.1097/00005176-199901000-00007; PMID: 9890463
  • Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2013; 4:2163; PMID: 23860099
  • Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009; 9:123; http://dx.doi.org/10.1186/1471-2180-9-123; PMID: 19508720
  • Hopkins MJ, Sharp R, Macfarlane GT. Variation in human intestinal microbiota with age. Dig Liver Dis 2002; 34:Suppl 2 S12 - 8; http://dx.doi.org/10.1016/S1590-8658(02)80157-8; PMID: 12408433
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486:222 - 7; PMID: 22699611
  • Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, Bloom SR, Darzi A, Athanasiou T, Marchesi JR, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011; 60:1214 - 23; http://dx.doi.org/10.1136/gut.2010.234708; PMID: 21572120
  • Liou AP, Paziuk M, Luevano JM Jr., Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5:78ra41; http://dx.doi.org/10.1126/scitranslmed.3005687; PMID: 23536013
  • García-Ródenas CL, Bergonzelli GE, Nutten S, Schumann A, Cherbut C, Turini M, Ornstein K, Rochat F, Corthésy-Theulaz I. Nutritional approach to restore impaired intestinal barrier function and growth after neonatal stress in rats. J Pediatr Gastroenterol Nutr 2006; 43:16 - 24; http://dx.doi.org/10.1097/01.mpg.0000226376.95623.9f; PMID: 16819372
  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65:263 - 7; http://dx.doi.org/10.1016/j.biopsych.2008.06.026; PMID: 18723164
  • Spencer SJ. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front Neurosci 2013; 7:109; http://dx.doi.org/10.3389/fnins.2013.00109; PMID: 23785312
  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480 - 4; http://dx.doi.org/10.1038/nature07540; PMID: 19043404
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1022 - 3; http://dx.doi.org/10.1038/4441022a; PMID: 17183309
  • Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 2013; 144:967 - 77; http://dx.doi.org/10.1053/j.gastro.2013.01.047; PMID: 23380084
  • Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 2011; 10:507 - 14; http://dx.doi.org/10.1016/j.chom.2011.10.007; PMID: 22036470
  • Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg JL. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 2010; 141:1241 - 52; http://dx.doi.org/10.1016/j.cell.2010.05.005; PMID: 20603004
  • Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011; 332:970 - 4; http://dx.doi.org/10.1126/science.1198719; PMID: 21596990
  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691 - 6; http://dx.doi.org/10.1073/pnas.1005963107; PMID: 20679230
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334:105 - 8; http://dx.doi.org/10.1126/science.1208344; PMID: 21885731
  • Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13:517 - 26; http://dx.doi.org/10.1016/j.cmet.2011.02.018; PMID: 21531334
  • Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70:567 - 90; PMID: 2181501
  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28:1221 - 7; http://dx.doi.org/10.1136/gut.28.10.1221; PMID: 3678950
  • Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B 1987; 86:439 - 72; http://dx.doi.org/10.1016/0305-0491(87)90433-0; PMID: 3297476
  • Marty J, Vernay M. Absorption and metabolism of the volatile fatty acids in the hind-gut of the rabbit. Br J Nutr 1984; 51:265 - 77; http://dx.doi.org/10.1079/BJN19840031; PMID: 6704374
  • Pomare EW, Branch WJ, Cummings JH. Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest 1985; 75:1448 - 54; http://dx.doi.org/10.1172/JCI111847; PMID: 3998144
  • Scheppach W, Pomare EW, Elia M, Cummings JH. The contribution of the large intestine to blood acetate in man. Clin Sci (Lond) 1991; 80:177 - 82; PMID: 1848171
  • Wolever TM, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr 2000; 84:57 - 61; PMID: 10961161
  • Tarini J, Wolever TM. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 2010; 35:9 - 16; http://dx.doi.org/10.1139/H09-119; PMID: 20130660
  • Priebe MG, Wang H, Weening D, Schepers M, Preston T, Vonk RJ. Factors related to colonic fermentation of nondigestible carbohydrates of a previous evening meal increase tissue glucose uptake and moderate glucose-associated inflammation. Am J Clin Nutr 2010; 91:90 - 7; http://dx.doi.org/10.3945/ajcn.2009.28521; PMID: 19889821
  • Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell 1978; 14:115 - 21; http://dx.doi.org/10.1016/0092-8674(78)90306-9; PMID: 667928
  • Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14:105 - 13; http://dx.doi.org/10.1016/0092-8674(78)90305-7; PMID: 667927
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324:1076 - 80; http://dx.doi.org/10.1126/science.1164097; PMID: 19461003
  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Borén J, Oresic M, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 2010; 51:1101 - 12; http://dx.doi.org/10.1194/jlr.M002774; PMID: 20040631
  • Jiang N, Yan X, Zhou W, Zhang Q, Chen H, Zhang Y, Zhang X. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse. J Proteome Res 2008; 7:3678 - 86; http://dx.doi.org/10.1021/pr800439b; PMID: 18656976
  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010; 328:753 - 6; http://dx.doi.org/10.1126/science.1186088; PMID: 20448184
  • Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 2006; 1107:13 - 23; http://dx.doi.org/10.1016/j.brainres.2006.05.097; PMID: 16854387
  • DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 2005; 142:28 - 38; http://dx.doi.org/10.1016/j.molbrainres.2005.09.002; PMID: 16219387
  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007; 447:178 - 82; http://dx.doi.org/10.1038/nature05772; PMID: 17468743
  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2010; 35:870 - 80; http://dx.doi.org/10.1038/npp.2009.197; PMID: 20010553
  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003; 23:9418 - 27; PMID: 14561870
  • Fitch MD, Fleming SE. Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. Am J Physiol 1999; 277:G31 - 40; PMID: 10409148
  • Cotter DG, Ercal B, d’Avignon DA, Dietzen DJ, Crawford PA. Impact of peripheral ketolytic deficiency on hepatic ketogenesis and gluconeogenesis during the transition to birth. J Biol Chem 2013; 288:19739 - 49; http://dx.doi.org/10.1074/jbc.M113.454868; PMID: 23689508
  • Cahill GF Jr.. Fuel metabolism in starvation. Annu Rev Nutr 2006; 26:1 - 22; http://dx.doi.org/10.1146/annurev.nutr.26.061505.111258; PMID: 16848698
  • Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 2004; 70:265 - 75; http://dx.doi.org/10.1016/j.plefa.2003.07.006; PMID: 14769485
  • Cahill GF Jr.. Starvation in man. N Engl J Med 1970; 282:668 - 75; http://dx.doi.org/10.1056/NEJM197003192821209; PMID: 4915800
  • Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci U S A 2009; 106:11276 - 81; http://dx.doi.org/10.1073/pnas.0902366106; PMID: 19549860
  • Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339:211 - 4; http://dx.doi.org/10.1126/science.1227166; PMID: 23223453
  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461:1282 - 6; http://dx.doi.org/10.1038/nature08530; PMID: 19865172
  • Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE, Maslowski KM, Vieira AT, Kranich J, Mackay CR. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev 2012; 245:164 - 76; http://dx.doi.org/10.1111/j.1600-065X.2011.01080.x; PMID: 22168419
  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61:364 - 71; http://dx.doi.org/10.2337/db11-1019; PMID: 22190648
  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 2008; 105:16767 - 72; http://dx.doi.org/10.1073/pnas.0808567105; PMID: 18931303
  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4:1829; http://dx.doi.org/10.1038/ncomms2852; PMID: 23652017
  • Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, Smith DM, Cawthorne MA, Stocker CJ, Arch JR. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 2013; 109:1755 - 64; http://dx.doi.org/10.1017/S0007114512003923; PMID: 23110765
  • Peters SG, Pomare EW, Fisher CA. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 1992; 33:1249 - 52; http://dx.doi.org/10.1136/gut.33.9.1249; PMID: 1427380
  • Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 2009; 69:2826 - 32; http://dx.doi.org/10.1158/0008-5472.CAN-08-4466; PMID: 19276343
  • Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 2011; 108:8030 - 5; http://dx.doi.org/10.1073/pnas.1016088108; PMID: 21518883
  • Titgemeyer EC, Mamedova LK, Spivey KS, Farney JK, Bradford BJ. An unusual distribution of the niacin receptor in cattle. J Dairy Sci 2011; 94:4962 - 7; http://dx.doi.org/10.3168/jds.2011-4193; PMID: 21943747
  • Miller CL, Dulay JR. The high-affinity niacin receptor HM74A is decreased in the anterior cingulate cortex of individuals with schizophrenia. Brain Res Bull 2008; 77:33 - 41; http://dx.doi.org/10.1016/j.brainresbull.2008.03.015; PMID: 18639743
  • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 2013; 110:4410 - 5; http://dx.doi.org/10.1073/pnas.1215927110; PMID: 23401498
  • Inoue D, Kimura I, Wakabayashi M, Tsumoto H, Ozawa K, Hara T, Takei Y, Hirasawa A, Ishihama Y, Tsujimoto G. Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett 2012; 586:1547 - 54; http://dx.doi.org/10.1016/j.febslet.2012.04.021; PMID: 22673524
  • Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity?. Neurosci Biobehav Rev 2003; 27:3 - 18; http://dx.doi.org/10.1016/S0149-7634(03)00005-8; PMID: 12732219
  • Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev 1979; 3:79 - 83; http://dx.doi.org/10.1016/0378-3782(79)90022-7; PMID: 118862
  • Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150:470 - 80; http://dx.doi.org/10.1016/j.cell.2012.07.008; PMID: 22863002
  • Juárez I, Gratton A, Flores G. Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following Cesarean delivery and birth anoxia. J Comp Neurol 2008; 507:1734 - 47; http://dx.doi.org/10.1002/cne.21651; PMID: 18253967
  • Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression?. Neurogastroenterol Motil 2013; 25:713 - 9; http://dx.doi.org/10.1111/nmo.12198; PMID: 23910373
  • Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13:701 - 12; http://dx.doi.org/10.1038/nrn3346; PMID: 22968153
  • Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2:94; http://dx.doi.org/10.3389/fphys.2011.00094; PMID: 22162969
  • Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, Versalovic J, Verdu EF, Dinan TG, Hecht G, et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013; 4:17 - 27; http://dx.doi.org/10.4161/gmic.22973; PMID: 23202796
  • Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23:255 - 64, e119; http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x; PMID: 21054680
  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011; 108:16050 - 5; http://dx.doi.org/10.1073/pnas.1102999108; PMID: 21876150
  • Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Macqueen G, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011; 60:307 - 17; http://dx.doi.org/10.1136/gut.2009.202515; PMID: 20966022
  • Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 1995; 14:3373 - 84; PMID: 7628438
  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106:3698 - 703; http://dx.doi.org/10.1073/pnas.0812874106; PMID: 19234110
  • Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res 2012; 27:1357 - 67; http://dx.doi.org/10.1002/jbmr.1588; PMID: 22407806
  • Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18:666 - 73; PMID: 22688187
  • Migliarini S, Pacini G, Pelosi B, Lunardi G, Pasqualetti M. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Mol Psychiatry 2013; 18:1106 - 18; PMID: 23007167
  • Plaçais PY, Preat T. To favor survival under food shortage, the brain disables costly memory. Science 2013; 339:440 - 2; http://dx.doi.org/10.1126/science.1226018; PMID: 23349289
  • Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006; 1761:736 - 44; http://dx.doi.org/10.1016/j.bbalip.2006.05.007; PMID: 16807088
  • Aronsson L, Huang Y, Parini P, Korach-André M, Håkansson J, Gustafsson JA, Pettersson S, Arulampalam V, Rafter J. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 2010; 5:5; http://dx.doi.org/10.1371/journal.pone.0013087; PMID: 20927337
  • Korecka A, de Wouters T, Cultrone A, Lapaque N, Pettersson S, Doré J, Blottière HM, Arulampalam V. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1025 - 37; http://dx.doi.org/10.1152/ajpgi.00293.2012; PMID: 23518684
  • Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 2008; 4:157; PMID: 18197175
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55 - 60; http://dx.doi.org/10.1038/nature11450; PMID: 23023125
  • Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3:559 - 72; http://dx.doi.org/10.1002/emmm.201100159; PMID: 21735552
  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58:1509 - 17; http://dx.doi.org/10.2337/db08-1637; PMID: 19366864
  • Ramos-Rodriguez JJ, Ortiz O, Jimenez-Palomares M, Kay KR, Berrocoso E, Murillo-Carretero MI, Perdomo G, Spires-Jones T, Cozar-Castellano I, Lechuga-Sancho AM, et al. Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 2013; 38:2462 - 75; http://dx.doi.org/10.1016/j.psyneuen.2013.05.010; PMID: 23790682
  • Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 2004; 26:1044 - 80; http://dx.doi.org/10.1080/13803390490514875; PMID: 15590460
  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes?. J Alzheimers Dis 2005; 7:63 - 80; PMID: 15750215
  • Stranahan AM, Mattson MP. Bidirectional metabolic regulation of neurocognitive function. Neurobiol Learn Mem 2011; 96:507 - 16; http://dx.doi.org/10.1016/j.nlm.2011.01.004; PMID: 21236352
  • de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7:45 - 61; PMID: 15750214
  • Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 2008; 11:309 - 17; http://dx.doi.org/10.1038/nn2055; PMID: 18278039
  • Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 2013; 154:3643 - 51; http://dx.doi.org/10.1210/en.2012-2151; PMID: 23892476
  • Gauffin Cano P, Santacruz A, Moya Á, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 2012; 7:e41079; http://dx.doi.org/10.1371/journal.pone.0041079; PMID: 22844426
  • Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, Roubenoff R, Auerbach S, DeCarli C, Wolf PA, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009; 302:2565 - 72; http://dx.doi.org/10.1001/jama.2009.1836; PMID: 20009056
  • Garza JC, Guo M, Zhang W, Lu XY. Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 2008; 283:18238 - 47; http://dx.doi.org/10.1074/jbc.M800053200; PMID: 18367451
  • O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J. Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol Cell Neurosci 2007; 35:559 - 72; http://dx.doi.org/10.1016/j.mcn.2007.05.001; PMID: 17618127
  • Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 2004; 101:1045 - 50; http://dx.doi.org/10.1073/pnas.2637002100; PMID: 14722361
  • Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005; 146:5092 - 9; http://dx.doi.org/10.1210/en.2005-0545; PMID: 16123168
  • Hanstock TL, Clayton EH, Li KM, Mallet PE. Anxiety and aggression associated with the fermentation of carbohydrates in the hindgut of rats. Physiol Behav 2004; 82:357 - 68; http://dx.doi.org/10.1016/j.physbeh.2004.04.002; PMID: 15276799
  • Hanstock TL, Mallet PE, Clayton EH. Increased plasma d-lactic acid associated with impaired memory in rats. Physiol Behav 2010; 101:653 - 9; http://dx.doi.org/10.1016/j.physbeh.2010.09.018; PMID: 20888356
  • Conn AR, Fell DI, Steele RD. Characterization of alpha-keto acid transport across blood-brain barrier in rats. Am J Physiol 1983; 245:E253 - 60; PMID: 6614164
  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 2005; 102:5588 - 93; http://dx.doi.org/10.1073/pnas.0501703102; PMID: 15809416
  • Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141:599 - 609, e1-3; http://dx.doi.org/10.1053/j.gastro.2011.04.052; PMID: 21683077
  • Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry 2014; 19:146 - 8; PMID: 23689536
  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013; 8:e68322; http://dx.doi.org/10.1371/journal.pone.0068322; PMID: 23844187
  • Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 2012; 57:2096 - 102; http://dx.doi.org/10.1007/s10620-012-2167-7; PMID: 22535281
  • MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007; 176:149 - 69; http://dx.doi.org/10.1016/j.bbr.2006.07.025; PMID: 16950524
  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, et al, MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541 - 6; http://dx.doi.org/10.1038/nature12506; PMID: 23985870
  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, et al, ANR MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500:585 - 8; http://dx.doi.org/10.1038/nature12480; PMID: 23985875
  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 2010; 107:20051 - 6; http://dx.doi.org/10.1073/pnas.1009906107; PMID: 21041648
  • Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013; 144:1394 - 401, e1-4; http://dx.doi.org/10.1053/j.gastro.2013.02.043; PMID: 23474283
  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488:178 - 84; http://dx.doi.org/10.1038/nature11319; PMID: 22797518
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336:1262 - 7; http://dx.doi.org/10.1126/science.1223813; PMID: 22674330
  • Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, Nicholson JK. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 2012; 4:rv6; http://dx.doi.org/10.1126/scitranslmed.3004244; PMID: 22674556

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.