1,015
Views
13
CrossRef citations to date
0
Altmetric
Review

Mini-chaperones

Potential immuno-stimulators in vaccine design

&
Pages 153-161 | Received 03 Aug 2012, Accepted 16 Sep 2012, Published online: 29 Oct 2012

References

  • Ebrahimi SM, Tebianian M. Role of mycobacterial heat shock protein 70 (mHSP70) as genetic vaccine adjuvants. World Applied Sciences Journal 2011; 14:1569 - 75
  • Javid B, MacAry PA, Lehner PJ. Structure and function: heat shock proteins and adaptive immunity. J Immunol 2007; 179:2035 - 40; PMID: 17675458
  • Kim LS, Kim JH. Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer 2011; 14:167 - 74; http://dx.doi.org/10.4048/jbc.2011.14.3.167; PMID: 22031796
  • Calderwood SK, Gong J. Molecular chaperones in mammary cancer growth and breast tumor therapy. J Cell Biochem 2012; 113:1096 - 103; http://dx.doi.org/10.1002/jcb.23461; PMID: 22105880
  • Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 2011; 10:1553 - 68; http://dx.doi.org/10.1586/erv.11.124; PMID: 22043955
  • Li Z. In vitro reconstitution of heat shock protein-peptide complexes for generating peptide-specific vaccines against cancers and infectious diseases. Methods 2004; 32:25 - 8; http://dx.doi.org/10.1016/S1046-2023(03)00183-X; PMID: 14624873
  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997; 186:1315 - 22; http://dx.doi.org/10.1084/jem.186.8.1315; PMID: 9334371
  • Wang HH, Mao CY, Teng LS, Cao J. Recent advances in heat shock protein-based cancer vaccines. Hepatobiliary Pancreat Dis Int 2006; 5:22 - 7; PMID: 16481277
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002; 20:395 - 425; http://dx.doi.org/10.1146/annurev.immunol.20.100301.064801; PMID: 11861608
  • Takakura Y, Takemoto S, Nishikawa M. Hsp-based tumor vaccines: state-of-the-art and future directions. Curr Opin Mol Ther 2007; 9:385 - 91; PMID: 17694451
  • Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2010; 2:238 - 47; http://dx.doi.org/10.1159/000296508; PMID: 20375559
  • Biswas C, Sriram U, Ciric B, Ostrovsky O, Gallucci S, Argon Y. The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen-presenting cells. Int Immunol 2006; 18:1147 - 57; http://dx.doi.org/10.1093/intimm/dxl049; PMID: 16772370
  • Bolhassani A, Mohit E, Rafati S. Different spectra of therapeutic vaccine development against HPV infections. Hum Vaccin 2009; 5:671 - 89; http://dx.doi.org/10.4161/hv.5.10.9370; PMID: 19684468
  • Udono H, Yamano T, Kawabata Y, Ueda M, Yui K. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 2001; 13:1233 - 42; http://dx.doi.org/10.1093/intimm/13.10.1233; PMID: 11581168
  • Ramirez SR, Singh-Jasuja H, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, et al. Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones 2005; 10:221 - 9; http://dx.doi.org/10.1379/CSC-117R.1; PMID: 16184767
  • Callahan MK, Garg M, Srivastava PK. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci USA 2008; 105:1662 - 7; http://dx.doi.org/10.1073/pnas.0711365105; PMID: 18216248
  • Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008; 7:1185 - 99; http://dx.doi.org/10.1586/14760584.7.8.1185; PMID: 18844593
  • Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 2004; 64:442 - 51; http://dx.doi.org/10.1111/j.1399-0039.2004.00299.x; PMID: 15361121
  • Figueiredo C, Wittmann M, Wang D, Dressel R, Seltsam A, Blasczyk R, et al. Heat shock protein 70 (HSP70) induces cytotoxicity of T-helper cells. Blood 2009; 113:3008 - 16; http://dx.doi.org/10.1182/blood-2008-06-162727; PMID: 19018093
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14:303 - 13; http://dx.doi.org/10.1016/S1074-7613(01)00111-X; PMID: 11290339
  • Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol 2008; 183:111 - 27; http://dx.doi.org/10.1007/978-3-540-72167-3_6; PMID: 18071657
  • Mandal K, Foteinos G, Jahangiri M, Xu Q. Role of antiheat shock protein 60 autoantibodies in atherosclerosis. Lupus 2005; 14:742 - 6; http://dx.doi.org/10.1191/0961203305lu2212oa; PMID: 16218479
  • Wick G, Knoflach M, Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 2004; 22:361 - 403; http://dx.doi.org/10.1146/annurev.immunol.22.012703.104644; PMID: 15032582
  • van Halteren AG, Roep BO, Gregori S, Cooke A, van Eden W, Kraal G, et al. Cross-reactive mycobacterial and self hsp60 epitope recognition in I-A(g7) expressing NOD, NOD-asp and Biozzi AB/H mice. J Autoimmun 2002; 18:139 - 47; http://dx.doi.org/10.1006/jaut.2001.0578; PMID: 11908946
  • Abulafia-Lapid R, Gillis D, Yosef O, Atlan H, Cohen IR. T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J Autoimmun 2003; 20:313 - 21; http://dx.doi.org/10.1016/S0896-8411(03)00038-6; PMID: 12791317
  • Salvetti M, Ristori G, Buttinelli C, Fiori P, Falcone M, Britton W, et al. The immune response to mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. J Neuroimmunol 1996; 65:143 - 53; http://dx.doi.org/10.1016/0165-5728(96)00013-6; PMID: 8964896
  • Todryk SM, Gough MJ, Pockley AG. Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 2003; 110:1 - 9; http://dx.doi.org/10.1046/j.1365-2567.2003.01725.x; PMID: 12941135
  • Hunt C, Morimoto RI. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 1985; 82:6455 - 9; http://dx.doi.org/10.1073/pnas.82.19.6455; PMID: 3931075
  • Yan Y, Cao Z, Yang M, Li H, Wei H, Fu Y, et al. A CpG oligodeoxynucleotide potentiates the anti-tumor effect of HSP65-Her2 fusion protein against Her2 positive B16 melanoma in mice. Int Immunopharmacol 2012; 12:402 - 7; http://dx.doi.org/10.1016/j.intimp.2011.12.013; PMID: 22222115
  • Wang QH, Buckle AM, Fersht AR. From mini-chaperone to GroEL. J Mol Biol 2000; 304:837 - 81
  • Chatellier J, Hill F, Lund PA, Fersht AR. In vivo activities of GroEL minichaperones. Proc Natl Acad Sci USA 1998; 95:9861 - 6; http://dx.doi.org/10.1073/pnas.95.17.9861; PMID: 9707566
  • Bolhassani A, Rafati S. DNA immunization as an efficient strategy for vaccination. Avicenna Journal of Medical Biotechnology 2009; 1:71 - 88
  • Li X, Yang X, Li L, Liu H, Liu J. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine 2006; 24:3321 - 31; http://dx.doi.org/10.1016/j.vaccine.2006.01.012; PMID: 16472546
  • Qazi KR, Wikman M, Vasconcelos NM, Berzins K, Ståhl S, Fernández C. Enhancement of DNA vaccine potency by linkage of Plasmodium falciparum malarial antigen gene fused with a fragment of HSP70 gene. Vaccine 2005; 23:1114 - 25; http://dx.doi.org/10.1016/j.vaccine.2004.08.033; PMID: 15629354
  • Chunxia S, Duan X, Wang X, Wang C, Cao R, Zhou B, et al. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Veterinary Microbiol 2006; 124:256 - 263
  • Ge FF, Qiu YF, Gao XF, Yang YW, Chen PY. Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70. Vet Immunol Immunopathol 2006; 113:288 - 96; http://dx.doi.org/10.1016/j.vetimm.2006.05.012; PMID: 16859755
  • Uto T, Tsujimura K, Uchijima M, Seto S, Nagata T, Suda T, et al. A novel vaccine strategy to induce mycobacterial antigen-specific Th1 responses by utilizing the C-terminal domain of heat shock protein 70. FEMS Immunol Med Microbiol 2011; 61:189 - 96; http://dx.doi.org/10.1111/j.1574-695X.2010.00762.x; PMID: 21204994
  • Pakravan N, Soudi S, Hassan ZM. N-terminally fusion of Her2/neu to HSP70 decreases efficiency of Her2/neu DNA vaccine. Cell Stress Chaperones 2010; 15:631 - 8; http://dx.doi.org/10.1007/s12192-010-0175-0; PMID: 20224916
  • Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 2004; 32:629 - 32; http://dx.doi.org/10.1042/BST0320629; PMID: 15270693
  • Facciponte JG, Wang XY, MacDonald IJ, Park JE, Arnouk H, Grimm MJ, et al. Heat shock proteins HSP70 and GP96: structural insights. Cancer Immunol Immunother 2006; 55:339 - 46; http://dx.doi.org/10.1007/s00262-005-0020-y; PMID: 16032399
  • Bolhassani A, Zahedifard F, Taghikhani M, Rafati S. Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine 2008; 26:3362 - 70; http://dx.doi.org/10.1016/j.vaccine.2008.03.082; PMID: 18471945
  • Pakravan N, Langroudi L, Hajimoradi M, Hassan ZM. Co-administration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model. Cell Stress Chaperones 2010; 15:977 - 84; http://dx.doi.org/10.1007/s12192-010-0208-8; PMID: 20544406
  • Manjili MH, Wang XY, Chen X, Martin T, Repasky EA, Henderson R, et al. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 2003; 171:4054 - 61; PMID: 14530326
  • He YF, Wang XH, Zhang GM, Chen HT, Zhang H, Feng ZH. Sustained low-level expression of interferon-gamma promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol Immunother 2005; 54:891 - 7; http://dx.doi.org/10.1007/s00262-004-0654-1; PMID: 15776283
  • Kmieciak M, Knutson KL, Dumur CI, Manjili MH. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol 2007; 37:675 - 85; http://dx.doi.org/10.1002/eji.200636639; PMID: 17304628
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860 - 7; http://dx.doi.org/10.1038/nature01322; PMID: 12490959
  • Pakravan N, Hashemi SM, Hassan ZM. Adjuvant activity of GP96 C-terminal domain towards Her2/neu DNA vaccine is fusion direction-dependent. Cell Stress Chaperones 2011; 16:41 - 8; http://dx.doi.org/10.1007/s12192-010-0219-5; PMID: 20730610
  • Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009; 458:438 - 44; http://dx.doi.org/10.1038/nature07960; PMID: 19325623
  • Pakravan N, Hassan ZM. Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model. Cell Stress Chaperones 2011; 16:449 - 57; http://dx.doi.org/10.1007/s12192-011-0258-6; PMID: 21359667
  • Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF, et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 2005; 174:195 - 204; PMID: 15611241
  • Rapp UK, Kaufmann SH. DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int Immunol 2004; 16:597 - 605; http://dx.doi.org/10.1093/intimm/dxh064; PMID: 15039390
  • Pakravan N, Soleimanjahi H, Hassan ZM. GP96 C-terminal improves Her2/neu DNA vaccine. J Gene Med 2010; 12:345 - 53; http://dx.doi.org/10.1002/jgm.1445; PMID: 20232284
  • Mohit E, Bolhassani A, Zahedifard F, Seyed N, Eslamifar A, Taghikhani M, et al. Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Mol Immunol 2013; 53:149 - 60; http://dx.doi.org/10.1016/j.molimm.2012.07.011; PMID: 22926003
  • Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010; 2:63ra94; http://dx.doi.org/10.1126/scitranslmed.3001375; PMID: 21178137
  • Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998; 188:2349 - 56; http://dx.doi.org/10.1084/jem.188.12.2349; PMID: 9858521
  • Liu B, Ye D, Song X, Zhao X, Yi L, Song J, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 2008; 26:1387 - 96; http://dx.doi.org/10.1016/j.vaccine.2007.12.034; PMID: 18272260
  • Bolhassani A, Zahedifard F, Taslimi Y, Taghikhani M, Nahavandian B, Rafati S. Antibody detection against HPV16 E7 & GP96 fragments as biomarkers in cervical cancer patients. Indian J Med Res 2009; 130:533 - 41; PMID: 20090101
  • Mohit E, Bolhassani A, Zahedifard F, Taslimi Y, Rafati S. The contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL /6 mouse model. Scand J Immunol 2012; 75:27 - 37; http://dx.doi.org/10.1111/j.1365-3083.2011.02620.x; PMID: 21916914
  • Abdian N, Gholami E, Zahedifard F, Safaee N, Rafati S. Evaluation of DNA/DNA and prime-boost vaccination using LPG3 against Leishmania major infection in susceptible BALB/c mice and its antigenic properties in human leishmaniasis. Exp Parasitol 2011; 127:627 - 36; http://dx.doi.org/10.1016/j.exppara.2010.12.007; PMID: 21187087
  • Tebianian M, Hoseini AZ, Ebrahimi SM, Memarnejadian A, Mokarram AR, Mahdavi M, et al. Cloning, expression, and immunogenicity of novel fusion protein of Mycobacterium tuberculosis based on ESAT-6 and truncated C-terminal fragment of HSP70. Biologicals 2011; 39:143 - 8; http://dx.doi.org/10.1016/j.biologicals.2011.02.002; PMID: 21388826
  • Suzue K, Young RA. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol 1996 a; 156:873 - 9; PMID: 8543845
  • Suzue K, Young RA. Heat shock proteins as immunological carriers and vaccines. EXS 1996 b; 77:451 - 65; PMID: 8856990
  • Ebrahimi SM, Tebianian M. Heterologous expression, purification and characterization of the influenza A virus M2e gene fused to Mycobacterium tuberculosis HSP70(359-610) in prokaryotic system as a fusion protein. Mol Biol Rep 2010; 37:2877 - 83; http://dx.doi.org/10.1007/s11033-009-9846-2; PMID: 19813102
  • Ebrahimi SM, Tebianian M, Mirjalili A, Paykari H, Varshovi HR, Toghyani H, et al. Fusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv). Archives of Razi Institute 2009; 64:71 - 6
  • Li YL, Liu J, Liu JN, Zhang J. Immunization of protein HPV16 E7 in fusion with mouse HSP70 inhibits the growth of TC-1 cells in tumor bearing mice. Vaccine 2011; 29:5959 - 62; http://dx.doi.org/10.1016/j.vaccine.2011.06.046; PMID: 21722685
  • Barrios C, Lussow AR, Van Embden J, Van der Zee R, Rappuoli R, Costantino P, et al. Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guérin priming. Eur J Immunol 1992; 22:1365 - 72; http://dx.doi.org/10.1002/eji.1830220606; PMID: 1601031
  • Marañón C, Thomas MC, Planelles L, López MC. The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Mol Immunol 2001; 38:279 - 87; http://dx.doi.org/10.1016/S0161-5890(01)00059-1; PMID: 11566321
  • Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 2002; 169:2422 - 9; PMID: 12193710
  • Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 2004; 32:629 - 32; http://dx.doi.org/10.1042/BST0320629; PMID: 15270693
  • Rico AI, Angel SO, Alonso C, Requena JM. Immunostimulatory properties of the Leishmania infantum heat shock proteins HSP70 and HSP83. Mol Immunol 1999; 36:1131 - 9; http://dx.doi.org/10.1016/S0161-5890(99)00136-4; PMID: 10698315
  • Rafati S, Gholami E, Hassani N, Ghaemimanesh F, Taslimi Y, Taheri T, et al. Leishmania major heat shock protein 70 (HSP70) is not protective in murine models of cutaneous leishmaniasis and stimulates strong humoral responses in cutaneous and visceral leishmaniasis patients. Vaccine 2007; 25:4159 - 69; http://dx.doi.org/10.1016/j.vaccine.2007.03.006; PMID: 17395340
  • Li HT, Yan JB, Li J, Zhou MH, Zhu XD, Zhang YX, et al. Enhancement of humoral immune responses to HBsAg by heat shock protein gp96 and its N-terminal fragment in mice. World J Gastroenterol 2005; 11:2858 - 63; PMID: 15902719
  • Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Löwik MJ, Berends-van der Meer DM, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 2008; 14:178 - 87; http://dx.doi.org/10.1158/1078-0432.CCR-07-1880; PMID: 18172269
  • Udono H, Yamano T, Kawabata Y, Ueda M, Yui K. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 2001; 13:1233 - 42; http://dx.doi.org/10.1093/intimm/13.10.1233; PMID: 11581168
  • Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF, et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 2005; 174:195 - 204; PMID: 15611241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.