703
Views
16
CrossRef citations to date
0
Altmetric
Review

Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1

A comparative study

Pages 462-470 | Received 28 Nov 2012, Accepted 04 Dec 2012, Published online: 18 Dec 2012

References

  • Jarrett O. Efficacy of recombinant feline leukemia virus vaccines. AIDS Res Hum Retroviruses 1996; 12:435 - 6; http://dx.doi.org/10.1089/aid.1996.12.435; PMID: 8882328
  • Hoover EA, Mullins JI, Chu H-J, Wasmoen TL. Efficacy of an inactivated feline leukemia virus vaccine. AIDS Res Hum Retroviruses 1996; 12:379 - 83; http://dx.doi.org/10.1089/aid.1996.12.379; PMID: 8882314
  • Hofmann-Lehmann R, Holznagel E, Aubert A, Ossent P, Reinacher M, Lutz H. Recombinant FeLV vaccine: long-term protection and effect on course and outcome of FIV infection. Vet Immunol Immunopathol 1995; 46:127 - 37; http://dx.doi.org/10.1016/0165-2427(94)07012-V; PMID: 7618252
  • Hofmann-Lehmann R, Tandon R, Boretti FS, Meli ML, Willi B, Cattori V, et al. Reassessment of feline leukaemia virus (FeLV) vaccines with novel sensitive molecular assays. Vaccine 2006; 24:1087 - 94; http://dx.doi.org/10.1016/j.vaccine.2005.09.010; PMID: 16198454
  • Hines DL, Cutting JA, Dietrich DL, Walsh JA. Evaluation of efficacy and safety of an inactivated virus vaccine against feline leukemia virus infection. J Am Vet Med Assoc 1991; 199:1428 - 30; PMID: 1666097
  • Langhammer S, Hübner J, Jarrett O, Kurth R, Denner J. Immunization with the transmembrane protein of a retrovirus, feline leukemia virus: absence of antigenemia following challenge. Antiviral Res 2011; 89:119 - 23; http://dx.doi.org/10.1016/j.antiviral.2010.11.011; PMID: 21108970
  • Langhammer S, Fiebig U, Kurth R, Denner J. Increased neutralizing antibody response after simultaneous immunization with leucogen and the feline leukemia virus transmembrane protein. Intervirology 2011; 54:78 - 86; http://dx.doi.org/10.1159/000318892; PMID: 20829603
  • Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol 2000; 74:4264 - 72; http://dx.doi.org/10.1128/JVI.74.9.4264-4272.2000; PMID: 10756041
  • Fiebig U, Hartmann MG, Bannert N, Kurth R, Denner J. Transspecies transmission of the endogenous koala retrovirus. J Virol 2006; 80:5651 - 4; http://dx.doi.org/10.1128/JVI.02597-05; PMID: 16699047
  • Chan DC, Kim PS. HIV entry and its inhibition. Cell 1998; 93:681 - 4; http://dx.doi.org/10.1016/S0092-8674(00)81430-0; PMID: 9630213
  • Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29 - 106; http://dx.doi.org/10.1007/978-3-642-19012-4_2; PMID: 12932075
  • Melikyan GB. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 2008; 5:111; http://dx.doi.org/10.1186/1742-4690-5-111; PMID: 19077194
  • Mühle M, Löchelt M, Denner J. Optimisation of expression and purification of the feline and primate foamy virus transmembrane envelope proteins using a 96 deep well screen. Protein Expr Purif 2012; 81:96 - 105; http://dx.doi.org/10.1016/j.pep.2011.09.006; PMID: 21964437
  • Fiebig U, Stephan O, Kurth R, Denner J. Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: basis for a vaccine for xenotransplantation?. Virology 2003; 307:406 - 13; http://dx.doi.org/10.1016/S0042-6822(02)00140-X; PMID: 12667808
  • Kaulitz D, Fiebig U, Eschricht M, Wurzbacher C, Kurth R, Denner J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011; 411:78 - 86; http://dx.doi.org/10.1016/j.virol.2010.12.032; PMID: 21237477
  • Denner J, Mihica D, Kaulitz D, Schmidt CM. Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virol J 2012; 9:260; http://dx.doi.org/10.1186/1743-422X-9-260; PMID: 23126255
  • Langhammer S, Fiebig U, Kurth R, Denner J. Neutralising antibodies against the transmembrane protein of feline leukaemia virus (FeLV). Vaccine 2005; 23:3341 - 8; http://dx.doi.org/10.1016/j.vaccine.2005.01.091; PMID: 15837241
  • Langhammer S, Hübner J, Kurth R, Denner J. Antibodies neutralizing feline leukaemia virus (FeLV) in cats immunized with the transmembrane envelope protein p15E. Immunology 2006; 117:229 - 37; http://dx.doi.org/10.1111/j.1365-2567.2005.02291.x; PMID: 16423059
  • Denner J. Towards an AIDS vaccine: the transmembrane envelope protein as target for broadly neutralizing antibodies. Hum Vaccin 2011; 7:Suppl 4 - 9; http://dx.doi.org/10.4161/hv.7.0.14555; PMID: 21266839
  • Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 2001; 75:10892 - 905; http://dx.doi.org/10.1128/JVI.75.22.10892-10905.2001; PMID: 11602729
  • Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 1993; 67:6642 - 7; PMID: 7692082
  • Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 2012; 491:406 - 12; http://dx.doi.org/10.1038/nature11544; PMID: 23151583
  • Bonsignori M, Montefiori DC, Wu X, Chen X, Hwang KK, Tsao CY, et al. Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design. J Virol 2012; 86:4688 - 92; http://dx.doi.org/10.1128/JVI.07163-11; PMID: 22301150
  • Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al, NISC Comparative Sequencing Program. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 2011; 333:1593 - 602; http://dx.doi.org/10.1126/science.1207532; PMID: 21835983
  • Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 2011; 333:1633 - 7; http://dx.doi.org/10.1126/science.1207227; PMID: 21764753
  • Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329:856 - 61; http://dx.doi.org/10.1126/science.1187659; PMID: 20616233
  • Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al, Protocol G Principal Investigators. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477:466 - 70; http://dx.doi.org/10.1038/nature10373; PMID: 21849977
  • Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J Virol 2011; 85:9998 - 10009; http://dx.doi.org/10.1128/JVI.05045-11; PMID: 21795340
  • Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al, Protocol G Principal Investigators. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326:285 - 9; http://dx.doi.org/10.1126/science.1178746; PMID: 19729618
  • Denner J, Mihica D, Kaulitz D, Schmidt CM. Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virol J 2012; 9:260; http://dx.doi.org/10.1186/1743-422X-9-260; PMID: 23126255
  • Behrendt R, Fiebig U, Kurth R, Denner J. Induction of antibodies binding to the membrane proximal external region of gp36 of HIV-2. Intervirology 2012; 55:252 - 6; http://dx.doi.org/10.1159/000324483; PMID: 21454955
  • Behrendt R, Fiebig U, Schmolke M, Kurth R, Denner J. Induction of Antibodies Specific for Gp41 of HIV-1 by Gene Gun DNA Vaccination. J Vaccines Vaccin 2012; http://dx.doi.org/10.4172/2157-7560.1000145
  • McGaughey GB, Barbato G, Bianchi E, Freidinger RM, Garsky VM, Hurni WM, et al. Progress towards the development of a HIV-1 gp41-directed vaccine. Curr HIV Res 2004; 2:193 - 204; http://dx.doi.org/10.2174/1570162043484933; PMID: 15078183
  • Hinz A, Schoehn G, Quendler H, Hulsik DL, Stiegler G, Katinger H, et al. Characterization of a trimeric MPER containing HIV-1 gp41 antigen. Virology 2009; 390:221 - 7; http://dx.doi.org/10.1016/j.virol.2009.05.015; PMID: 19539967
  • Bianchi E, Joyce JG, Miller MD, Finnefrock AC, Liang X, Finotto M, et al. Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate yields neutralizing antisera against HIV-1 isolates. Proc Natl Acad Sci U S A 2010; 107:10655 - 60; http://dx.doi.org/10.1073/pnas.1004261107; PMID: 20483992
  • Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine 2005; 23:1559 - 73; http://dx.doi.org/10.1016/j.vaccine.2004.09.037; PMID: 15694508
  • Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, et al. Enhancement of alpha -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. [Erratum in: J Biol Chem 2003; 278:5492] J Biol Chem 2002; 277:45811 - 20; http://dx.doi.org/10.1074/jbc.M205862200; PMID: 12237296
  • McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM, et al. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb. Biochemistry 2003; 42:3214 - 23; http://dx.doi.org/10.1021/bi026952u; PMID: 12641452
  • Zwick MB. The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. AIDS 2005; 19:1725 - 37; http://dx.doi.org/10.1097/01.aids.0000189850.83322.41; PMID: 16227780
  • Montero M, van Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54 - 84; http://dx.doi.org/10.1128/MMBR.00020-07; PMID: 18322034
  • Bellamy-McIntyre AK, Lay CS, Baär S, Maerz AL, Talbo GH, Drummer HE, et al. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem 2007; 282:23104 - 16; http://dx.doi.org/10.1074/jbc.M703485200; PMID: 17526486
  • Noah E, Biron Z, Naider F, Arshava B, Anglister J. The membrane proximal external region of the HIV-1 envelope glycoprotein gp41 contributes to the stabilization of the six-helix bundle formed with a matching N’ peptide. Biochemistry 2008; 47:6782 - 92; http://dx.doi.org/10.1021/bi7023139; PMID: 18540633
  • Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 2010; 6:e1000880; http://dx.doi.org/10.1371/journal.ppat.1000880; PMID: 20463810
  • Hager-Braun C, Katinger H, Tomer KB. The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. J Immunol 2006; 176:7471 - 81; PMID: 16751393
  • Lorizate M, Gómara MJ, de la Torre BG, Andreu D, Nieva JL. Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. J Mol Biol 2006; 360:45 - 55; http://dx.doi.org/10.1016/j.jmb.2006.04.056; PMID: 16813835
  • Fiebig U, Schmolke M, Eschricht M, Kurth R, Denner J. Mode of interaction between the HIV-1-neutralizing monoclonal antibody 2F5 and its epitope. AIDS 2009; 23:887 - 95; http://dx.doi.org/10.1097/QAD.0b013e3283292153; PMID: 19414989
  • Morozov VA, Morozov AV, Semaan M, Denner J. Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology 2012; 9:67; http://dx.doi.org/10.1186/1742-4690-9-67; PMID: 22889273
  • Oostendorp RAJ, Meijer CJLM, Scheper RJ. Immunosuppression by retroviral-envelope-related proteins, and their role in non-retroviral human disease. Crit Rev Oncol Hematol 1993; 14:189 - 206; http://dx.doi.org/10.1016/1040-8428(93)90009-S; PMID: 8397847
  • Denner J. Immunosuppression by retroviruses: implications for xenotransplantation. Ann N Y Acad Sci 1998; 862:75 - 86; http://dx.doi.org/10.1111/j.1749-6632.1998.tb09119.x; PMID: 9928208
  • Denner J. How does HIV induce AIDS? The virus protein hypothesis. J Hum Virol 2000; 3:81 - 2; PMID: 10850893
  • Denner J, Eschricht M, Lauck M, Semaan M, Schlaermann P, Ryu H, et al. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1. PLoS ONE 2012; In Press
  • Heneine W, Schweizer M, Sandstrom P, Folks T. Human infection with foamy viruses. Curr Top Microbiol Immunol 2003; 277:181 - 96; http://dx.doi.org/10.1007/978-3-642-55701-9_8; PMID: 12908773
  • Heneine W, Switzer WM, Sandstrom P, Brown J, Vedapuri S, Schable CA, et al. Identification of a human population infected with simian foamy viruses. Nat Med 1998; 4:403 - 7; http://dx.doi.org/10.1038/nm0498-403; PMID: 9546784
  • Boneva RS, Switzer WM, Spira TJ, Bhullar VB, Shanmugam V, Cong ME, et al. Clinical and virological characterization of persistent human infection with simian foamy viruses. AIDS Res Hum Retroviruses 2007; 23:1330 - 7; http://dx.doi.org/10.1089/aid.2007.0104; PMID: 18184074
  • Cummins JE Jr., Boneva RS, Switzer WM, Christensen LL, Sandstrom P, Heneine W, et al. Mucosal and systemic antibody responses in humans infected with simian foamy virus. J Virol 2005; 79:13186 - 9; http://dx.doi.org/10.1128/JVI.79.20.13186-13189.2005; PMID: 16189020
  • Alke A, Schwantes A, Zemba M, Flügel RM, Löchelt M. Characterization of the humoral immune response and virus replication in cats experimentally infected with feline foamy virus. Virology 2000; 275:170 - 6; http://dx.doi.org/10.1006/viro.2000.0537; PMID: 11017797
  • Linial M. Why aren’t foamy viruses pathogenic?. Trends Microbiol 2000; 8:284 - 9; http://dx.doi.org/10.1016/S0966-842X(00)01763-7; PMID: 10838587
  • Santillana-Hayat M, Rozain F, Bittoun P, Chopin-Robert C, Lasneret J, Périès J, et al. Transient immunosuppressive effect induced in rabbits and mice by the human spumaretrovirus prototype HFV (human foamy virus). Res Virol 1993; 144:389 - 96; http://dx.doi.org/10.1016/S0923-2516(06)80054-3; PMID: 8284516
  • Hooks JJ, Detrick-Hooks B. Simian foamy virus-induced immunosuppression in rabbits. J Gen Virol 1979; 44:383 - 90; http://dx.doi.org/10.1099/0022-1317-44-2-383; PMID: 230289
  • Lampe J, Marino S, Rethwilm A, Aguzzi A. Degeneration of the cerebellar granule cell layer in transgenic mice expressing genes of human foamy virus. Neuropathol Appl Neurobiol 1998; 24:36 - 43; http://dx.doi.org/10.1046/j.1365-2990.1998.00086.x; PMID: 9549727
  • Tschopp RR, Brandner S, Marino S, Bothe K, Horak I, Rethwilm A, et al. Analysis of the determinants of neurotropism and neurotoxicity of HFV in transgenic mice. Virology 1996; 216:338 - 46; http://dx.doi.org/10.1006/viro.1996.0069; PMID: 8607263
  • Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, et al. Foamy virus particle formation. J Virol 1998; 72:1610 - 5; PMID: 9445065
  • Shaw KL, Lindemann D, Mulligan MJ, Goepfert PA. Foamy virus envelope glycoprotein is sufficient for particle budding and release. J Virol 2003; 77:2338 - 48; http://dx.doi.org/10.1128/JVI.77.4.2338-2348.2003; PMID: 12551971
  • Lindemann D, Goepfert PA. The foamy virus envelope glycoproteins. Curr Top Microbiol Immunol 2003; 277:111 - 29; http://dx.doi.org/10.1007/978-3-642-55701-9_5; PMID: 12908770
  • Kong XH, Yu H, Xuan CH, Wang JZ, Chen QM, Geng YQ. The requirements and mechanism for capsid assembly and budding of bovine foamy virus. Arch Virol 2005; 150:1677 - 84; http://dx.doi.org/10.1007/s00705-005-0518-9; PMID: 15834655
  • Wilk T, Geiselhart V, Frech M, Fuller SD, Flügel RM, Löchelt M. Specific interaction of a novel foamy virus Env leader protein with the N-terminal Gag domain. J Virol 2001; 75:7995 - 8007; http://dx.doi.org/10.1128/JVI.75.17.7995-8007.2001; PMID: 11483744
  • Geiselhart V, Schwantes A, Bastone P, Frech M, Löchelt M. Features of the Env leader protein and the N-terminal Gag domain of feline foamy virus important for virus morphogenesis. Virology 2003; 310:235 - 44; http://dx.doi.org/10.1016/S0042-6822(03)00125-9; PMID: 12781711
  • Geiselhart V, Bastone P, Kempf T, Schnölzer M, Löchelt M. Furin-mediated cleavage of the feline foamy virus Env leader protein. J Virol 2004; 78:13573 - 81; http://dx.doi.org/10.1128/JVI.78.24.13573-13581.2004; PMID: 15564468
  • Schwantes A, Truyen U, Weikel J, Weiss C, Löchelt M. Application of chimeric feline foamy virus-based retroviral vectors for the induction of antiviral immunity in cats. J Virol 2003; 77:7830 - 42; http://dx.doi.org/10.1128/JVI.77.14.7830-7842.2003; PMID: 12829823
  • Mühle M, Bleiholder A, Kolb S, Hübner J, Löchelt M, Denner J. Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening. Virology 2011; 412:333 - 40; http://dx.doi.org/10.1016/j.virol.2011.01.023; PMID: 21316070
  • Bleiholder A, Mühle M, Hechler T, Bevins S, vandeWoude S, Denner J, et al. Pattern of seroreactivity against feline foamy virus proteins in domestic cats from Germany. Vet Immunol Immunopathol 2011; 143:292 - 300; http://dx.doi.org/10.1016/j.vetimm.2011.06.007; PMID: 21724269
  • Alke A, Schwantes A, Kido K, Flötenmeyer M, Flügel RM, Löchelt M. The bet gene of feline foamy virus is required for virus replication. Virology 2001; 287:310 - 20; http://dx.doi.org/10.1006/viro.2001.1065; PMID: 11531409
  • Löchelt M. Foamy virus transactivation and gene expression. Curr Top Microbiol Immunol 2003; 277:27 - 61; http://dx.doi.org/10.1007/978-3-642-55701-9_2; PMID: 12908767
  • Russell RA, Wiegand HL, Moore MD, Schäfer A, McClure MO, Cullen BR. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol 2005; 79:8724 - 31; http://dx.doi.org/10.1128/JVI.79.14.8724-8731.2005; PMID: 15994766
  • Mühle M, Hoffmann K, Löchelt M,, Denner J. Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. Clin Vaccine Immunol In Press
  • Jern P, Sperber GO, Blomberg J. Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2005; 2:50; http://dx.doi.org/10.1186/1742-4690-2-50; PMID: 16092962

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.