993
Views
7
CrossRef citations to date
0
Altmetric
Commentary

Universal cancer vaccine

An update on the design of cancer vaccines generated from endothelial cells

&
Pages 1549-1552 | Received 03 Mar 2013, Accepted 14 Mar 2013, Published online: 09 Apr 2013

References

  • Lokhov PG, Balashova EE. Tumor-induced endothelial cell surface heterogeneity directly affects endothelial cell escape from a cell-mediated immune response in vitro. Hum Vaccin Immunother 2013; 9:198 - 209; PMID: 23442592
  • Copier J, Dalgleish A. Overview of tumor cell-based vaccines. Int Rev Immunol 2006; 25:297 - 319; http://dx.doi.org/10.1080/08830180600992472; PMID: 17169778
  • Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 2000; 6:1160 - 6; http://dx.doi.org/10.1038/80506; PMID: 11017149
  • Scappaticci FA, Nolan GP. Induction of anti-tumor immunity in mice using a syngeneic endothelial cell vaccine. Anticancer Res 2003; 23:2B 1165 - 72; PMID: 12820367
  • Corsini E, Gelati M, Calatozzolo C, Alessandri G, Frigerio S, De Francesco M, et al. Immunotherapy with bovine aortic endothelial cells in subcutaneous and intracerebral glioma models in rats: effects on survival time, tumor growth, and tumor neovascularization. Cancer Immunol Immunother 2004; 53:955 - 62; http://dx.doi.org/10.1007/s00262-004-0529-5; PMID: 15449042
  • Okaji Y, Tsuno NH, Kitayama J, Saito S, Takahashi T, Kawai K, et al. Vaccination with autologous endothelium inhibits angiogenesis and metastasis of colon cancer through autoimmunity. Cancer Sci 2004; 95:85 - 90; http://dx.doi.org/10.1111/j.1349-7006.2004.tb03175.x; PMID: 14720332
  • Chen XY, Zhang W, Zhang W, Wu S, Bi F, Su YJ, et al. Vaccination with viable human umbilical vein endothelial cells prevents metastatic tumors by attack on tumor vasculature with both cellular and humoral immunity. Clin Cancer Res 2006; 12:5834 - 40; http://dx.doi.org/10.1158/1078-0432.CCR-06-1105; PMID: 17020991
  • Okaji Y, Tsuno NH, Saito S, Yoneyama S, Tanaka M, Nagawa H, et al. Vaccines targeting tumour angiogenesis--a novel strategy for cancer immunotherapy. Eur J Surg Oncol 2006; 32:363 - 70; http://dx.doi.org/10.1016/j.ejso.2006.01.016; PMID: 16520018
  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 2000; 191:795 - 804; http://dx.doi.org/10.1084/jem.191.5.795; PMID: 10704461
  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850 - 4; http://dx.doi.org/10.1126/science.1076514; PMID: 12242449
  • Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 2003; 100:8372 - 7; http://dx.doi.org/10.1073/pnas.1533209100; PMID: 12826605
  • Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 2005; 12:1005 - 16; http://dx.doi.org/10.1245/ASO.2005.03.536; PMID: 16283570
  • Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 2005; 23:6043 - 53; http://dx.doi.org/10.1200/JCO.2005.06.205; PMID: 16087944
  • Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3:630 - 41; http://dx.doi.org/10.1038/nri1150; PMID: 12974478
  • Hart MN, Sadewasser KL, Cancilla PA, DeBault LE. Experimental autoimmune type of vasculitis resulting from activation of mouse lymphocytes to cultured endothelium. Lab Invest 1983; 48:419 - 27; PMID: 6834786
  • Matsuda M. Experimental glomerular tissue injury induced by immunization with cultured endothelial cell plasma membrane. Acta Pathol Jpn 1988; 38:823 - 39; PMID: 3055806
  • Thompson PL, Dessureault S. In: Shurin MR, Smolkin YS, editors. Immune-Mediated Diseases From Theory to Therapy New York: Springer; 2007. p. 345-55.
  • de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 2008; 57:1569 - 77; http://dx.doi.org/10.1007/s00262-008-0536-z; PMID: 18523771
  • Chiang CL, Benencia F, Coukos G. Whole tumor antigen vaccines. Semin Immunol 2010; 22:132 - 43; http://dx.doi.org/10.1016/j.smim.2010.02.004; PMID: 20356763
  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15:5323 - 37; http://dx.doi.org/10.1158/1078-0432.CCR-09-0737; PMID: 19723653
  • Lang JM, Andrei AC, McNeel DG. Prioritization of cancer antigens: keeping the target in sight. Expert Rev Vaccines 2009; 8:1657 - 61; http://dx.doi.org/10.1586/erv.09.134; PMID: 19943761
  • Lokhov PG, Balashova EE. Cellular cancer vaccines: an update on the development of vaccines generated from cell surface antigens. J Cancer 2010; 1:230 - 41; http://dx.doi.org/10.7150/jca.1.230; PMID: 21151581
  • Balashova EE, Lokhov PG. Proteolytically-cleaved fragments of cell surface proteins stimulate a cytotoxic immune response against tumor-activated endothelial cells in vitro. J Cancer Sci Ther. 2010; 2:126 - 31; http://dx.doi.org/10.4172/1948-5956.1000037
  • Balashova EE, Lokhov PG. Proteolytically-cleaved fragments of cell-surface proteins from live tumor cells stimulate anti-tumor immune response in vitro. Journal of Carcinogenesis & Mutagenesis. 2010; 1:1 - 3; http://dx.doi.org/10.4172/2157-2518.1000103
  • Balashova EE, Dashtiev MI, Lokhov PG. Proteomic footprinting of drug-treated cancer cells as a measure of cellular vaccine efficacy for the prevention of cancer recurrence. Mol Cell Proteomics. 2012; 11:M111 014480.
  • Lokhov P, Balashova E, Dashtiev M. Cell proteomic footprint. Rapid Commun Mass Spectrom 2009; 23:680 - 2; http://dx.doi.org/10.1002/rcm.3928; PMID: 19184978
  • Paczesny S, Shi H, Saito H, Mannoni P, Fay J, Banchereau J, et al. Measuring melanoma-specific cytotoxic T lymphocytes elicited by dendritic cell vaccines with a tumor inhibition assay in vitro. J Immunother 2005; 28:148 - 57; http://dx.doi.org/10.1097/01.cji.0000154247.97254.ef; PMID: 15725959
  • Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol 1995; 18:86 - 94; http://dx.doi.org/10.1097/00002371-199508000-00002; PMID: 8574470