475
Views
9
CrossRef citations to date
0
Altmetric
Special Focus Review

Divergent contributions of regulatory T cells to the pathogenesis of chronic hepatitis C

, &
Pages 1569-1576 | Received 24 Jan 2013, Accepted 17 Apr 2013, Published online: 31 May 2013

  • Alter MJ, Margolis HS, Krawczynski K, Judson FN, Mares A, Alexander WJ, et al. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med 1992; 327:1899 - 905; http://dx.doi.org/10.1056/NEJM199212313272702; PMID: 1280771
  • El-Serag HB. Hepatocellular carcinoma and hepatitis C in the United States. Hepatology 2002; 36:Suppl 1 S74 - 83; http://dx.doi.org/10.1002/hep.1840360710; PMID: 12407579
  • Grakoui A, Wychowski C, Lin C, Feinstone SM, Rice CM. Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol 1993; 67:1385 - 95; PMID: 7679746
  • Healthcare-associated hepatitis B and C outbreaks reported to the Centers for Disease Control and Prevention (CDC) in 2008-2011. CDC Website 2012.
  • Amon JJ, Garfein RS, Ahdieh-Grant L, Armstrong GL, Ouellet LJ, Latka MH, et al. Prevalence of hepatitis C virus infection among injection drug users in the United States, 1994-2004. Clin Infect Dis 2008; 46:1852 - 8; http://dx.doi.org/10.1086/588297; PMID: 18462109
  • Brown RS Jr., Gaglio PJ. Scope of worldwide hepatitis C problem. Liver Transpl 2003; 9:S10 - 3; http://dx.doi.org/10.1053/jlts.2003.50244; PMID: 14586889
  • Jauncey M, Micallef JM, Gilmour S, Amin J, White PA, Rawlinson W, et al. Clearance of hepatitis C virus after newly acquired infection in injection drug users. J Infect Dis 2004; 190:1270 - 4; http://dx.doi.org/10.1086/423943; PMID: 15346337
  • Rauch A, Gaudieri S, Thio C, Bochud PY. Host genetic determinants of spontaneous hepatitis C clearance. Pharmacogenomics 2009; 10:1819 - 37; http://dx.doi.org/10.2217/pgs.09.121; PMID: 19891557
  • Kuzushita N, Hayashi N, Moribe T, Katayama K, Kanto T, Nakatani S, et al. Influence of HLA haplotypes on the clinical courses of individuals infected with hepatitis C virus. Hepatology 1998; 27:240 - 4; http://dx.doi.org/10.1002/hep.510270136; PMID: 9425943
  • Neumann-Haefelin C. [Protective role of HLA-B27 in HIV and hepatitis C virus infection]. Dtsch Med Wochenschr 2011; 136:320 - 4; http://dx.doi.org/10.1055/s-0031-1272531; PMID: 21302207
  • Davis GL, Esteban-Mur R, Rustgi V, Hoefs J, Gordon SC, Trepo C, et al, International Hepatitis Interventional Therapy Group. Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. N Engl J Med 1998; 339:1493 - 9; http://dx.doi.org/10.1056/NEJM199811193392102; PMID: 9819447
  • Schaefer EA, Chung RT. Anti-hepatitis C virus drugs in development. Gastroenterology 2012; 142:1340 - 50, e1; http://dx.doi.org/10.1053/j.gastro.2012.02.015; PMID: 22537441
  • U.S.Food and Drug Administration. Incivek (telaprevir) in combination with drugs peginterferon alfa and ribavirin (incivek combination treatment): drug safety communication - serious skin reactions. Electronic Communication, USDA Website 2012.
  • Liu S, Cipriano LE, Holodniy M, Owens DK, Goldhaber-Fiebert JD. New protease inhibitors for the treatment of chronic hepatitis C: a cost-effectiveness analysis. Ann Intern Med 2012; 156:279 - 90; http://dx.doi.org/10.7326/0003-4819-156-4-201202210-00005; PMID: 22351713
  • Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2000; 191:1499 - 512; http://dx.doi.org/10.1084/jem.191.9.1499; PMID: 10790425
  • Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, Streeck H, et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J Exp Med 2012; 209:61 - 75; http://dx.doi.org/10.1084/jem.20100388; PMID: 22213804
  • Day CL, Lauer GM, Robbins GK, McGovern B, Wurcel AG, Gandhi RT, et al. Broad specificity of virus-specific CD4+ T-helper-cell responses in resolved hepatitis C virus infection. J Virol 2002; 76:12584 - 95; http://dx.doi.org/10.1128/JVI.76.24.12584-12595.2002; PMID: 12438584
  • Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, et al. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004; 40:1062 - 71; http://dx.doi.org/10.1002/hep.20454; PMID: 15486925
  • Ward SM, Fox BC, Brown PJ, Worthington J, Fox SB, Chapman RW, et al. Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 2007; 47:316 - 24; http://dx.doi.org/10.1016/j.jhep.2007.03.023; PMID: 17475362
  • Li S, Floess S, Hamann A, Gaudieri S, Lucas A, Hellard M, et al. Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection. PLoS Pathog 2009; 5:e1000707; http://dx.doi.org/10.1371/journal.ppat.1000707; PMID: 20041222
  • Sturm N, Thélu MA, Camous X, Dimitrov G, Ramzan M, Dufeu-Duchesne T, et al. Characterization and role of intra-hepatic regulatory T cells in chronic hepatitis C pathogenesis. J Hepatol 2010; 53:25 - 35; http://dx.doi.org/10.1016/j.jhep.2010.02.024; PMID: 20452085
  • Li S, Gowans EJ, Chougnet C, Plebanski M, Dittmer U. Natural regulatory T cells and persistent viral infection. J Virol 2008; 82:21 - 30; http://dx.doi.org/10.1128/JVI.01768-07; PMID: 17855537
  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10:490 - 500; http://dx.doi.org/10.1038/nri2785; PMID: 20559327
  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature 1992; 359:693 - 9; http://dx.doi.org/10.1038/359693a0; PMID: 1436033
  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27:20 - 1; http://dx.doi.org/10.1038/83713; PMID: 11137993
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4:337 - 42; http://dx.doi.org/10.1038/ni909; PMID: 12612581
  • Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol 2009; 27:551 - 89; http://dx.doi.org/10.1146/annurev.immunol.021908.132723; PMID: 19302048
  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9:239 - 44; http://dx.doi.org/10.1038/ni1572; PMID: 18285775
  • Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007; 27:635 - 46; http://dx.doi.org/10.1016/j.immuni.2007.08.014; PMID: 17919943
  • Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3:253 - 7; http://dx.doi.org/10.1038/nri1032; PMID: 12658273
  • Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?. Immunity 2009; 30:626 - 35; http://dx.doi.org/10.1016/j.immuni.2009.05.002; PMID: 19464985
  • Miyara M, Sakaguchi S. Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol 2011; 89:346 - 51; http://dx.doi.org/10.1038/icb.2010.137; PMID: 21301480
  • Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 2002; 196:255 - 60; http://dx.doi.org/10.1084/jem.20020394; PMID: 12119350
  • Gravano DM, Vignali DA. The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol Life Sci 2012; 69:1997 - 2008; http://dx.doi.org/10.1007/s00018-011-0907-z; PMID: 22205213
  • Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012; 209:1713 - 22, S1-19; http://dx.doi.org/10.1084/jem.20120822; PMID: 22966003
  • Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012;209:1723-42, S1.
  • Wang R, Wan Q, Kozhaya L, Fujii H, Unutmaz D. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS One 2008; 3:e2705; http://dx.doi.org/10.1371/journal.pone.0002705; PMID: 18628982
  • Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009; 106:13439 - 44; PMID: 19666573
  • Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009; 106:13445 - 50; http://dx.doi.org/10.1073/pnas.0901944106; PMID: 19651619
  • Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009; 39:3315 - 22; http://dx.doi.org/10.1002/eji.200939684; PMID: 19750484
  • Dwyer KM, Hanidziar D, Putheti P, Hill PA, Pommey S, McRae JL, et al. Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am J Transplant 2010; 10:2410 - 20; http://dx.doi.org/10.1111/j.1600-6143.2010.03291.x; PMID: 20977632
  • Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 2006; 107:3925 - 32; http://dx.doi.org/10.1182/blood-2005-11-4502; PMID: 16418326
  • Ghiringhelli F, Ménard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 2006; 214:229 - 38; http://dx.doi.org/10.1111/j.1600-065X.2006.00445.x; PMID: 17100888
  • La Cava A, Van Kaer L, Fu-Dong-Shi. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol 2006; 27:322 - 7; http://dx.doi.org/10.1016/j.it.2006.05.003; PMID: 16735139
  • Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009; 30:636 - 45; http://dx.doi.org/10.1016/j.immuni.2009.04.010; PMID: 19464986
  • Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 2007; 13:108 - 16; http://dx.doi.org/10.1016/j.molmed.2007.01.003; PMID: 17257897
  • Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O’Shea JJ, et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med 2008; 205:1975 - 81; http://dx.doi.org/10.1084/jem.20080308; PMID: 18710931
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8:523 - 32; http://dx.doi.org/10.1038/nri2343; PMID: 18566595
  • Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol 2011; 23:424 - 30; http://dx.doi.org/10.1016/j.smim.2011.10.002; PMID: 22055883
  • Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007; 110:1225 - 32; http://dx.doi.org/10.1182/blood-2006-12-064527; PMID: 17449799
  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257 - 65; http://dx.doi.org/10.1084/jem.20062512; PMID: 17502665
  • Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, et al. Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 2009; 23:1685 - 93; http://dx.doi.org/10.1096/fj.08-126458; PMID: 19211924
  • Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ 2007; 14:2076 - 84; http://dx.doi.org/10.1038/sj.cdd.4402220; PMID: 17762882
  • Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007; 109:2058 - 65; http://dx.doi.org/10.1182/blood-2006-04-016451; PMID: 17110462
  • Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011; 332:600 - 3; http://dx.doi.org/10.1126/science.1202947; PMID: 21474713
  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity 2004; 21:503 - 13; http://dx.doi.org/10.1016/j.immuni.2004.08.010; PMID: 15485628
  • Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 2008; 180:5916 - 26; PMID: 18424711
  • Sarris M, Andersen KG, Randow F, Mayr L, Betz AG. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 2008; 28:402 - 13; http://dx.doi.org/10.1016/j.immuni.2008.01.012; PMID: 18328743
  • Li S, Jones KL, Woollard DJ, Dromey J, Paukovics G, Plebanski M, et al. Defining target antigens for CD25+ FOXP3 + IFN-γ- regulatory T cells in chronic hepatitis C virus infection. Immunol Cell Biol 2007; 85:197 - 204; PMID: 17199111
  • MacDonald AJ, Duffy M, Brady MT, McKiernan S, Hall W, Hegarty J, et al. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J Infect Dis 2002; 185:720 - 7; http://dx.doi.org/10.1086/339340; PMID: 11920289
  • Smyk-Pearson S, Golden-Mason L, Klarquist J, Burton JR Jr., Tester IA, Wang CC, et al. Functional suppression by FoxP3+CD4+CD25(high) regulatory T cells during acute hepatitis C virus infection. J Infect Dis 2008; 197:46 - 57; http://dx.doi.org/10.1086/523651; PMID: 18171284
  • Boettler T, Spangenberg HC, Neumann-Haefelin C, Panther E, Urbani S, Ferrari C, et al. T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J Virol 2005; 79:7860 - 7; http://dx.doi.org/10.1128/JVI.79.12.7860-7867.2005; PMID: 15919940
  • Sugimoto K, Ikeda F, Stadanlick J, Nunes FA, Alter HJ, Chang KM. Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology 2003; 38:1437 - 48; PMID: 14647055
  • Ebinuma H, Nakamoto N, Li Y, Price DA, Gostick E, Levine BL, et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol 2008; 82:5043 - 53; http://dx.doi.org/10.1128/JVI.01548-07; PMID: 18337568
  • Langhans B, Braunschweiger I, Arndt S, Schulte W, Satoguina J, Layland LE, et al. Core-specific adaptive regulatory T-cells in different outcomes of hepatitis C. Clin Sci (Lond) 2010; 119:97 - 109; http://dx.doi.org/10.1042/CS20090661; PMID: 20222873
  • Cusick MF, Schiller JJ, Gill JC, Eckels DD. Hepatitis C virus induces regulatory T cells by naturally occurring viral variants to suppress T cell responses. Clin Dev Immunol 2011;2011:806061.
  • Mishiro S, Takeda K, Hoshi Y, Yoshikawa A, Gotanda T, Itoh Y. An autoantibody cross-reactive to hepatitis C virus core and a host nuclear antigen. Autoimmunity 1991; 10:269 - 73; http://dx.doi.org/10.3109/08916939109001900; PMID: 1723001
  • Kanduc D, Stufano A, Lucchese G, Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides 2008; 29:1755 - 66; http://dx.doi.org/10.1016/j.peptides.2008.05.022; PMID: 18582510
  • Kanduc D. HCV: Written in our DNA. Self Nonself 2011; 2:108 - 13; http://dx.doi.org/10.4161/self.2.2.15795; PMID: 22299062
  • Kusalik A, Bickis M, Lewis C, Li Y, Lucchese G, Marincola FM, et al. Widespread and ample peptide overlapping between HCV and Homo sapiens proteomes. Peptides 2007; 28:1260 - 7; http://dx.doi.org/10.1016/j.peptides.2007.04.001; PMID: 17485143
  • Losikoff P, Terry F, Mishra S, Martin W, Ardito M, Bailey-Kellogg C, et al. A hepatitis C virus-encoded epitope, homologous to a wide array of predicted human epitopes, stimulates a T-regulatory cell response in patients with chronic hepatitis C. New England Regional Center of Excellence Annual Retreat 2012 2012.
  • Rushbrook SM, Ward SM, Unitt E, Vowler SL, Lucas M, Klenerman P, et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 2005; 79:7852 - 9; http://dx.doi.org/10.1128/JVI.79.12.7852-7859.2005; PMID: 15919939
  • Pfeiffer JK, Sonnenburg JL. The intestinal microbiota and viral susceptibility. Front Microbiol 2011; 2:92; http://dx.doi.org/10.3389/fmicb.2011.00092; PMID: 21833331
  • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331:337 - 41; http://dx.doi.org/10.1126/science.1198469; PMID: 21205640
  • Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011; 478:250 - 4; http://dx.doi.org/10.1038/nature10434; PMID: 21937990
  • Heeg MH, Ulsenheimer A, Grüner NH, Zachoval R, Jung MC, Gerlach JT, et al. FOXP3 expression in hepatitis C virus-specific CD4+ T cells during acute hepatitis C. Gastroenterology 2009; 137:1280 - 8, e1-6; http://dx.doi.org/10.1053/j.gastro.2009.06.059; PMID: 19596013
  • Manigold T, Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect Dis 2007; 7:804 - 13; http://dx.doi.org/10.1016/S1473-3099(07)70289-X; PMID: 18045563
  • Speletas M, Argentou N, Germanidis G, Vasiliadis T, Mantzoukis K, Patsiaoura K, et al. Foxp3 expression in liver correlates with the degree but not the cause of inflammation. Mediators Inflamm 2011;2011:827565.
  • Rouse BT, Suvas S. Regulatory cells and infectious agents: detentes cordiale and contraire. J Immunol 2004; 173:2211 - 5; PMID: 15294929
  • Bolacchi F, Sinistro A, Ciaprini C, Demin F, Capozzi M, Carducci FC, et al. Increased hepatitis C virus (HCV)-specific CD4+CD25+ regulatory T lymphocytes and reduced HCV-specific CD4+ T cell response in HCV-infected patients with normal versus abnormal alanine aminotransferase levels. Clin Exp Immunol 2006; 144:188 - 96; http://dx.doi.org/10.1111/j.1365-2249.2006.03048.x; PMID: 16634790
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245 - 52; http://dx.doi.org/10.1038/32588; PMID: 9521319
  • Ryan EJ, O’Farrelly C. The affect of chronic hepatitis C infection on dendritic cell function: a summary of the experimental evidence. J Viral Hepat 2011; 18:601 - 7; http://dx.doi.org/10.1111/j.1365-2893.2011.01453.x; PMID: 21794024
  • Ulsenheimer A, Gerlach JT, Jung MC, Gruener N, Wächtler M, Backmund M, et al. Plasmacytoid dendritic cells in acute and chronic hepatitis C virus infection. Hepatology 2005; 41:643 - 51; http://dx.doi.org/10.1002/hep.20592; PMID: 15726647
  • Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 2009; 119:1745 - 54; http://dx.doi.org/10.1172/JCI39133; PMID: 19587449
  • Cicinnati VR, Kang J, Sotiropoulos GC, Hilgard P, Frilling A, Broelsch CE, et al. Altered chemotactic response of myeloid and plasmacytoid dendritic cells from patients with chronic hepatitis C: role of alpha interferon. J Gen Virol 2008; 89:1243 - 53; http://dx.doi.org/10.1099/vir.0.83517-0; PMID: 18420803
  • Kunitani H, Shimizu Y, Murata H, Higuchi K, Watanabe A. Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases. J Hepatol 2002; 36:734 - 41; http://dx.doi.org/10.1016/S0168-8278(02)00062-4; PMID: 12044522
  • Nattermann J, Zimmermann H, Iwan A, von Lilienfeld-Toal M, Leifeld L, Nischalke HD, et al. Hepatitis C virus E2 and CD81 interaction may be associated with altered trafficking of dendritic cells in chronic hepatitis C. Hepatology 2006; 44:945 - 54; http://dx.doi.org/10.1002/hep.21350; PMID: 17006905
  • Wald O, Weiss ID, Galun E, Peled A. Chemokines in hepatitis C virus infection: pathogenesis, prognosis and therapeutics. Cytokine 2007; 39:50 - 62; http://dx.doi.org/10.1016/j.cyto.2007.05.013; PMID: 17629707
  • Wertheimer AM, Bakke A, Rosen HR. Direct enumeration and functional assessment of circulating dendritic cells in patients with liver disease. Hepatology 2004; 40:335 - 45; http://dx.doi.org/10.1002/hep.20306; PMID: 15368438
  • Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, et al. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 1999; 162:5584 - 91; PMID: 10228041
  • Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 2001; 97:3171 - 6; http://dx.doi.org/10.1182/blood.V97.10.3171; PMID: 11342445
  • Anthony DD, Yonkers NL, Post AB, Asaad R, Heinzel FP, Lederman MM, et al. Selective impairments in dendritic cell-associated function distinguish hepatitis C virus and HIV infection. J Immunol 2004; 172:4907 - 16; PMID: 15067070
  • Murakami H, Akbar SM, Matsui H, Horiike N, Onji M. Decreased interferon-alpha production and impaired T helper 1 polarization by dendritic cells from patients with chronic hepatitis C. Clin Exp Immunol 2004; 137:559 - 65; http://dx.doi.org/10.1111/j.1365-2249.2004.02550.x; PMID: 15320906
  • Szabo G, Dolganiuc A. Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Immunobiology 2005; 210:237 - 47; http://dx.doi.org/10.1016/j.imbio.2005.05.018; PMID: 16164031
  • Della Bella S, Crosignani A, Riva A, Presicce P, Benetti A, Longhi R, et al. Decrease and dysfunction of dendritic cells correlate with impaired hepatitis C virus-specific CD4+ T-cell proliferation in patients with hepatitis C virus infection. Immunology 2007; 121:283 - 92; http://dx.doi.org/10.1111/j.1365-2567.2007.02577.x; PMID: 17462079
  • Averill L, Lee WM, Karandikar NJ. Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin Immunol 2007; 123:40 - 9; http://dx.doi.org/10.1016/j.clim.2006.12.001; PMID: 17239662
  • Gelderblom HC, Nijhuis LE, de Jong EC, te Velde AA, Pajkrt D, Reesink HW, et al. Monocyte-derived dendritic cells from chronic HCV patients are not infected but show an immature phenotype and aberrant cytokine profile. Liver Int 2007; 27:944 - 53; http://dx.doi.org/10.1111/j.1478-3231.2007.01507.x; PMID: 17696933
  • MacDonald AJ, Semper AE, Libri NA, Rosenberg WM. Monocyte-derived dendritic cell function in chronic hepatitis C is impaired at physiological numbers of dendritic cells. Clin Exp Immunol 2007; 148:494 - 500; http://dx.doi.org/10.1111/j.1365-2249.2007.03367.x; PMID: 17362265
  • Kanto T, Inoue M, Miyatake H, Sato A, Sakakibara M, Yakushijin T, et al. Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J Infect Dis 2004; 190:1919 - 26; http://dx.doi.org/10.1086/425425; PMID: 15529255
  • Saito K, Ait-Goughoulte M, Truscott SM, Meyer K, Blazevic A, Abate G, et al. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J Virol 2008; 82:3320 - 8; http://dx.doi.org/10.1128/JVI.02547-07; PMID: 18216090
  • Mengshol JA, Golden-Mason L, Castelblanco N, Im KA, Dillon SM, Wilson CC, et al, Virahep-C Study Group. Impaired plasmacytoid dendritic cell maturation and differential chemotaxis in chronic hepatitis C virus: associations with antiviral treatment outcomes. Gut 2009; 58:964 - 73; http://dx.doi.org/10.1136/gut.2008.168948; PMID: 19193669
  • Bain C, Fatmi A, Zoulim F, Zarski JP, Trépo C, Inchauspé G. Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology 2001; 120:512 - 24; http://dx.doi.org/10.1053/gast.2001.21212; PMID: 11159892
  • Dolganiuc A, Paek E, Kodys K, Thomas J, Szabo G. Myeloid dendritic cells of patients with chronic HCV infection induce proliferation of regulatory T lymphocytes. Gastroenterology 2008; 135:2119 - 27; http://dx.doi.org/10.1053/j.gastro.2008.07.082; PMID: 18835391
  • Blackard JT, Smeaton L, Hiasa Y, Horiike N, Onji M, Jamieson DJ, et al. Detection of hepatitis C virus (HCV) in serum and peripheral-blood mononuclear cells from HCV-monoinfected and HIV/HCV-coinfected persons. J Infect Dis 2005; 192:258 - 65; http://dx.doi.org/10.1086/430949; PMID: 15962220
  • Ludwig IS, Lekkerkerker AN, Depla E, Bosman F, Musters RJ, Depraetere S, et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 2004; 78:8322 - 32; http://dx.doi.org/10.1128/JVI.78.15.8322-8332.2004; PMID: 15254204
  • Krishnadas DK, Ahn JS, Han J, Kumar R, Agrawal B. Immunomodulation by hepatitis C virus-derived proteins: targeting human dendritic cells by multiple mechanisms. Int Immunol 2010; 22:491 - 502; http://dx.doi.org/10.1093/intimm/dxq033; PMID: 20410260
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685 - 711; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040; PMID: 12615891
  • Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 2010; 108:111 - 65; http://dx.doi.org/10.1016/B978-0-12-380995-7.00004-5; PMID: 21056730
  • Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun 2010; 34:1 - 6; http://dx.doi.org/10.1016/j.jaut.2009.08.008; PMID: 19717280
  • Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 2009; 182:1901 - 11; http://dx.doi.org/10.4049/jimmunol.0803404; PMID: 19201843
  • Cobbold SP, Adams E, Nolan KF, Regateiro FS, Waldmann H. Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev 2010; 236:203 - 18; http://dx.doi.org/10.1111/j.1600-065X.2010.00913.x; PMID: 20636819
  • Yu CI, Chiang BL. A new insight into hepatitis C vaccine development. J Biomed Biotechnol 2010;2010:548280.
  • Halliday J, Klenerman P, Barnes E. Vaccination for hepatitis C virus: closing in on an evasive target. Expert Rev Vaccines 2011; 10:659 - 72; http://dx.doi.org/10.1586/erv.11.55; PMID: 21604986
  • Keynan Y, Card CM, McLaren PJ, Dawood MR, Kasper K, Fowke KR. The role of regulatory T cells in chronic and acute viral infections. Clin Infect Dis 2008; 46:1046 - 52; http://dx.doi.org/10.1086/529379; PMID: 18444822
  • Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49 - 86; http://dx.doi.org/10.1007/978-3-642-27340-7_3; PMID: 23463197

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.