1,158
Views
56
CrossRef citations to date
0
Altmetric
Commentary

Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses

, &
Pages 2584-2590 | Received 08 Jul 2013, Accepted 13 Aug 2013, Published online: 26 Aug 2013

References

  • Plotkin SA, Offit PA, eds. A short history of vaccination, 1-16 (Elsevier, New York, 2008).
  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol 2010; 13:106 - 12; http://dx.doi.org/10.1016/j.mib.2009.12.001; PMID: 20079678
  • Sinha VR, Trehan A. Biodegradable microspheres for parenteral delivery. Crit Rev Ther Drug Carrier Syst 2005; 22:535 - 602; http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i6.20; PMID: 16566705
  • Abbas AO, Donovan MD, Salem AK. Formulating poly(lactide-co-glycolide) particles for plasmid DNA delivery. J Pharm Sci 2008; 97:2448 - 61; http://dx.doi.org/10.1002/jps.21215; PMID: 17918737
  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28:215 - 36; http://dx.doi.org/10.1007/s11095-010-0241-4; PMID: 20721603
  • Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev 2009; 61:205 - 17; http://dx.doi.org/10.1016/j.addr.2008.12.013; PMID: 19272328
  • Zepp F. Principles of vaccine design-Lessons from nature. Vaccine 2010; 28:Suppl 3 C14 - 24; http://dx.doi.org/10.1016/j.vaccine.2010.07.020; PMID: 20713252
  • Ulery BD, Petersen LK, Phanse Y, Kong CS, Broderick SR, Kumar D, Ramer-Tait AE, Carrillo-Conde B, Rajan K, Wannemuehler MJ, et al. Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. Sci Rep 2011; 1:198; http://dx.doi.org/10.1038/srep00198; PMID: 22355713
  • Yoshida M, Babensee JE. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J Biomed Mater Res A 2004; 71:45 - 54; http://dx.doi.org/10.1002/jbm.a.30131; PMID: 15368253
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26:5046 - 57; http://dx.doi.org/10.1016/j.vaccine.2008.07.035; PMID: 18680779
  • Zhang XQ, Dahle CE, Baman NK, Rich N, Weiner GJ, Salem AK. Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J Immunother 2007; 30:469 - 78; http://dx.doi.org/10.1097/CJI.0b013e31802fd8c6; PMID: 17589287
  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M. Pathogen recognition and development of particulate vaccines: does size matter?. Methods 2006; 40:1 - 9; http://dx.doi.org/10.1016/j.ymeth.2006.05.016; PMID: 16997708
  • Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006; 440:808 - 12; http://dx.doi.org/10.1038/nature04596; PMID: 16489357
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004; 82:488 - 96; http://dx.doi.org/10.1111/j.0818-9641.2004.01272.x; PMID: 15479434
  • Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 2011; 239:178 - 96; http://dx.doi.org/10.1111/j.1600-065X.2010.00978.x; PMID: 21198672
  • Geary SM, Lemke CD, Lubaroff DM, Salem AK. Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN. Cancer Immunol Immunother 2011; 60:1309 - 17; http://dx.doi.org/10.1007/s00262-011-1038-y; PMID: 21626029
  • Keijzer C, Slütter B, van der Zee R, Jiskoot W, van Eden W, Broere F. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One 2011; 6:e26684; http://dx.doi.org/10.1371/journal.pone.0026684; PMID: 22073184
  • Petersen LK, Ramer-Tait AE, Broderick SR, Kong CS, Ulery BD, Rajan K, Wannemuehler MJ, Narasimhan B. Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 2011; 32:6815 - 22; http://dx.doi.org/10.1016/j.biomaterials.2011.05.063; PMID: 21703679
  • Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 2005; 57:391 - 410; http://dx.doi.org/10.1016/j.addr.2004.09.003; PMID: 15560948
  • Le Corre P, Rytting JH, Gajan V, Chevanne F, Le Verge R. In vitro controlled release kinetics of local anaesthetics from poly(D,L-lactide) and poly(lactide-co-glycolide) microspheres. J Microencapsul 1997; 14:243 - 55; http://dx.doi.org/10.3109/02652049709015336; PMID: 9132474
  • Greenwald D, Shumway S, Albear P, Gottlieb L. Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res 1994; 56:372 - 7; http://dx.doi.org/10.1006/jsre.1994.1058; PMID: 8152233
  • Blanco FC, Srinivasan P, Walk RM, Snyder JA, Behlke M, Salem AK, Vukmanovic S, Sandler AD. Development of an siRNA delivery system targeting macrophage function in-vivo. J Am Coll Surg 2012; 215:S74 - 74; http://dx.doi.org/10.1016/j.jamcollsurg.2012.06.204
  • Hong L, Krishnamachari Y, Seabold D, Joshi V, Schneider G, Salem AK. Intracellular release of 17-β estradiol from cationic polyamidoamine dendrimer surface-modified poly (lactic-co-glycolic acid) microparticles improves osteogenic differentiation of human mesenchymal stromal cells. Tissue Eng Part C Methods 2011; 17:319 - 25; http://dx.doi.org/10.1089/ten.tec.2010.0388; PMID: 20883116
  • Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, Zhang Q, Salem AK. Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A 2012; 18:775 - 84; http://dx.doi.org/10.1089/ten.tea.2011.0432; PMID: 21988716
  • Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci 2010; 99:368 - 84; http://dx.doi.org/10.1002/jps.21840; PMID: 19670295
  • Intra J, Salem AK. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. J Drug Target 2011; 19:393 - 408; http://dx.doi.org/10.3109/1061186X.2010.504263; PMID: 20681752
  • Intra J, Zhang XQ, Williams RL, Zhu X, Sandler AD, Salem AK. Immunostimulatory sutures that treat local disease recurrence following primary tumor resection. Biomed Mater 2011; 6:011001; http://dx.doi.org/10.1088/1748-6041/6/1/011001; PMID: 21206000
  • Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Hunter SK. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol 2011; 205:e1 - 8; http://dx.doi.org/10.1016/j.ajog.2011.06.024; PMID: 21802065
  • Moon JJ, Suh H, Polhemus ME, Ockenhouse CF, Yadava A, Irvine DJ. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One 2012; 7:e31472; http://dx.doi.org/10.1371/journal.pone.0031472; PMID: 22328935
  • Zhang XQ, Intra J, Salem AK. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul 2008; 25:1 - 12; http://dx.doi.org/10.1080/02652040701659347; PMID: 18188727
  • Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 2009; 27:3013 - 21; http://dx.doi.org/10.1016/j.vaccine.2009.03.034; PMID: 19428913
  • Raghuwanshi D, Mishra V, Suresh MR, Kaur K. A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 2012; 30:7292 - 9; http://dx.doi.org/10.1016/j.vaccine.2012.09.036; PMID: 23022399
  • Diesner SC, Wang XY, Jensen-Jarolim E, Untersmayr E, Gabor F. Use of lectin-functionalized particles for oral immunotherapy. Ther Deliv 2012; 3:277 - 90; http://dx.doi.org/10.4155/tde.11.146; PMID: 22834202
  • Lassalle V, Ferreira ML. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 2007; 7:767 - 83; http://dx.doi.org/10.1002/mabi.200700022; PMID: 17541922
  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J 2013; 15:85 - 94; http://dx.doi.org/10.1208/s12248-012-9418-6; PMID: 23054976
  • Zhang X-Q, Dahle CE, Weiner GJ, Salem AK. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J Pharm Sci 2007; 96:3283 - 92; http://dx.doi.org/10.1002/jps.20978; PMID: 17497736
  • Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandler AD. Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother 2009; 58:517 - 30; http://dx.doi.org/10.1007/s00262-008-0574-6; PMID: 18719913
  • Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012; 18; http://dx.doi.org/10.1038/nm.2883; PMID: 22842478
  • Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C, Ghiringhelli F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010; 70:3052 - 61; http://dx.doi.org/10.1158/0008-5472.CAN-09-3690; PMID: 20388795
  • Geary SM, Lemke CD, Lubaroff DM, Salem AK. The combination of a low-dose chemotherapeutic agent, 5-Fluorouracil, and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system. PLoS One 2013; 8:e67904; http://dx.doi.org/10.1371/journal.pone.0067904; PMID: 23840786
  • Nixon DF, Hioe C, Chen PD, Bian Z, Kuebler P, Li ML, Qiu H, Li XM, Singh M, Richardson J, et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine 1996; 14:1523 - 30; http://dx.doi.org/10.1016/S0264-410X(96)00099-0; PMID: 9014294
  • Reece JC, Vardaxis NJ, Marshall JA, Crowe SM, Cameron PU. Uptake of HIV and latex particles by fresh and cultured dendritic cells and monocytes. Immunol Cell Biol 2001; 79:255 - 63; http://dx.doi.org/10.1046/j.1440-1711.2001.01011.x; PMID: 11380679
  • Gutierro I, Hernández RM, Igartua M, Gascón AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002; 21:67 - 77; http://dx.doi.org/10.1016/S0264-410X(02)00435-8; PMID: 12443664
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007; 28:5344 - 57; http://dx.doi.org/10.1016/j.biomaterials.2007.08.015; PMID: 17825905
  • Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm 2005; 301:149 - 60; http://dx.doi.org/10.1016/j.ijpharm.2005.05.028; PMID: 16023313
  • Igartua M, Hernández RM, Esquisabel A, Gascón AR, Calvo MB, Pedraz JL. Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. J Control Release 1998; 56:63 - 73; http://dx.doi.org/10.1016/S0168-3659(98)00077-7; PMID: 9801430
  • Lopac SK, Torres MP, Wilson-Welder JH, Wannemuehler MJ, Narasimhan B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. J Biomed Mater Res B Appl Biomater 2009; 91:938 - 47; http://dx.doi.org/10.1002/jbm.b.31478; PMID: 19642209
  • Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev 2002; 54:889 - 910; http://dx.doi.org/10.1016/S0169-409X(02)00050-9; PMID: 12384314
  • Torres MP, Determan AS, Anderson GL, Mallapragada SK, Narasimhan B. Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 2007; 28:108 - 16; http://dx.doi.org/10.1016/j.biomaterials.2006.08.047; PMID: 16965812
  • Carrillo-Conde B, Schiltz E, Yu J, Chris Minion F, Phillips GJ, Wannemuehler MJ, Narasimhan B. Encapsulation into amphiphilic polyanhydride microparticles stabilizes Yersinia pestis antigens. Acta Biomater 2010; 6:3110 - 9; http://dx.doi.org/10.1016/j.actbio.2010.01.040; PMID: 20123135
  • Göpferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev 2002; 54:911 - 31; http://dx.doi.org/10.1016/S0169-409X(02)00051-0; PMID: 12384315
  • Tamada JA, Langer R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci U S A 1993; 90:552 - 6; http://dx.doi.org/10.1073/pnas.90.2.552; PMID: 8421690
  • Determan AS, Wilson JH, Kipper MJ, Wannemuehler MJ, Narasimhan B. Protein stability in the presence of polymer degradation products: consequences for controlled release formulations. Biomaterials 2006; 27:3312 - 20; http://dx.doi.org/10.1016/j.biomaterials.2006.01.054; PMID: 16504288
  • Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol 2010; 17:1356 - 62; http://dx.doi.org/10.1128/CVI.00164-10; PMID: 20631332
  • Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Int J Pharm 2008; 364:265 - 71; http://dx.doi.org/10.1016/j.ijpharm.2008.06.030; PMID: 18662761
  • Huntimer L, Ramer-Tait AE, Petersen LK, Ross KA, Walz KA, Wang C, Hostetter J, Narasimhan B, Wannemuehler MJ. Evaluation of biocompatibility and administration site reactogenicity of polyanhydride-particle-based platform for vaccine delivery. Adv Healthc Mater 2013; 2:369 - 78; http://dx.doi.org/10.1002/adhm.201200181; PMID: 23184561
  • Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One 2011; 6:e17642; http://dx.doi.org/10.1371/journal.pone.0017642; PMID: 21408610
  • Joshi VB, Geary SM, Carrillo-Conde BR, Narasimhan B, Salem AK. Characterizing the antitumor response in mice treated with antigen-loaded polyanhydride microparticles. Acta Biomater 2013; 9:5583 - 9; http://dx.doi.org/10.1016/j.actbio.2012.11.001; PMID: 23153760
  • Gould MP, Greene JA, Bhoj V, DeVecchio JL, Heinzel FP. Distinct modulatory effects of LPS and CpG on IL-18-dependent IFN-gamma synthesis. J Immunol 2004; 172:1754 - 62; PMID: 14734758
  • Wedmore I, McManus JG, Pusateri AE, Holcomb JB. A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma 2006; 60:655 - 8; http://dx.doi.org/10.1097/01.ta.0000199392.91772.44; PMID: 16531872
  • Saint-Lu N, Tourdot S, Razafindratsita A, Mascarell L, Berjont N, Chabre H, Louise A, Van Overtvelt L, Moingeon P. Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy 2009; 64:1003 - 13; http://dx.doi.org/10.1111/j.1398-9995.2009.01945.x; PMID: 19220212
  • Figueiredo L, Cadete A, Gonçalves LMD, Corvo ML, Almeida AJ. Intranasal immunisation of mice against Streptococcus equi using positively charged nanoparticulate carrier systems. Vaccine 2012; 30:6551 - 8; http://dx.doi.org/10.1016/j.vaccine.2012.08.050; PMID: 22947139
  • Li XY, Li X, Kong XY, Shi S, Guo G, Zhang J, Luo F, Zhao X, Wei YQ, Qian ZY, et al. Preparation of N-trimethyl chitosan-protein nanoparticles intended for vaccine delivery. J Nanosci Nanotechnol 2010; 10:4850 - 8; http://dx.doi.org/10.1166/jnn.2010.2211; PMID: 21125819
  • Fan W, Yan W, Xu ZS, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 2012; 90:21 - 7; http://dx.doi.org/10.1016/j.colsurfb.2011.09.042; PMID: 22014934
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100:5 - 28; http://dx.doi.org/10.1016/j.jconrel.2004.08.010; PMID: 15491807
  • Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 2013; 34:1270 - 80; http://dx.doi.org/10.1016/j.biomaterials.2012.10.013; PMID: 23140978
  • Oliveira CR, Rezende CM, Silva MR, Pêgo AP, Borges O, Goes AM. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl Trop Dis 2012; 6:e1894; http://dx.doi.org/10.1371/journal.pntd.0001894; PMID: 23209848
  • Malik B, Goyal AK, Zakir F, Vyas SP. Surface engineered nanoparticles for oral immunization. J Biomed Nanotechnol 2011; 7:132 - 4; http://dx.doi.org/10.1166/jbn.2011.1236; PMID: 21485838
  • Mangal S, Pawar D, Agrawal U, Jain AK, Vyas SP. Evaluation of mucoadhesive carrier adjuvant: Toward an oral anthrax vaccine. Artif Cells Nanomed Biotechnol 2013; Forthcoming http://dx.doi.org/10.3109/21691401.2013.769447; PMID: 23452384
  • Koppolu B, Zaharoff DA. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials 2013; 34:2359 - 69; http://dx.doi.org/10.1016/j.biomaterials.2012.11.066; PMID: 23274070
  • Jiang L, Qian F, He X, Wang F, Ren D, He Y, Li K, Sun S, Yin C. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. J Gene Med 2007; 9:253 - 64; http://dx.doi.org/10.1002/jgm.1017; PMID: 17397104
  • Jabbal-Gill I, Watts P, Smith A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv 2012; 9:1051 - 67; http://dx.doi.org/10.1517/17425247.2012.697455; PMID: 22708875
  • Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C, et al. Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 2011; 365:2178 - 87; http://dx.doi.org/10.1056/NEJMoa1101245; PMID: 22150036
  • Gogev S, de Fays K, Versali MF, Gautier S, Thiry E. Glycol chitosan improves the efficacy of intranasally administrated replication defective human adenovirus type 5 expressing glycoprotein D of bovine herpesvirus 1. Vaccine 2004; 22:1946 - 53; http://dx.doi.org/10.1016/j.vaccine.2003.11.011; PMID: 15121307
  • Gogev S, Vanderheijden N, Lemaire M, Schynts F, D’Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine 2002; 20:1451 - 65; http://dx.doi.org/10.1016/S0264-410X(01)00458-3; PMID: 11818166
  • Hagenaars N, Mastrobattista E, Verheul RJ, Mooren I, Glansbeek HL, Heldens JG, van den Bosch H, Jiskoot W. Physicochemical and immunological characterization of N,N,N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res 2009; 26:1353 - 64; http://dx.doi.org/10.1007/s11095-009-9845-y; PMID: 19224344
  • Ghendon Y, Markushin S, Vasiliev Y, Akopova I, Koptiaeva I, Krivtsov G, Borisova O, Ahmatova N, Kurbatova E, Mazurina S, et al. Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J Med Virol 2009; 81:494 - 506; http://dx.doi.org/10.1002/jmv.21415; PMID: 19152418
  • Lemke CD, Graham JB, Geary SM, Zamba G, Lubaroff DM, Salem AK. Chitosan is a surprising negative modulator of cytotoxic CD8+ T cell responses elicited by adenovirus cancer vaccines. Mol Pharm 2011; 8:1652 - 61; http://dx.doi.org/10.1021/mp100464y; PMID: 21780831

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.