1,588
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Comparative in vitro and in vivo assessment of toxin neutralization by anti-tetanus toxin monoclonal antibodies

, , , , &
Pages 344-351 | Received 18 Jul 2013, Accepted 10 Oct 2013, Published online: 14 Oct 2013

References

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat StructBiol 1998; 5:898 - 902; http://dx.doi.org/10.1038/2338; PMID: 9783750
  • Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat StructBiol 2000; 7:693 - 9; http://dx.doi.org/10.1038/78005; PMID: 10932256
  • Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev 2000; 80:717 - 66; PMID: 10747206
  • Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 1995; 28:423 - 72; http://dx.doi.org/10.1017/S0033583500003292; PMID: 8771234
  • Herreros J, Ng T, Schiavo G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. MolBiol Cell 2001; 12:2947 - 60; http://dx.doi.org/10.1091/mbc.12.10.2947; PMID: 11598183
  • Herreros J, Lalli G, Schiavo G. C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 2000; 347:199 - 204; http://dx.doi.org/10.1042/0264-6021:3470199; PMID: 10727419
  • Montecucco C, Rossetto O, Schiavo G. Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 2004; 12:442 - 6; http://dx.doi.org/10.1016/j.tim.2004.08.002; PMID: 15381192
  • Swaminathan S. Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 2011; 278:4467 - 85; http://dx.doi.org/10.1111/j.1742-4658.2011.08183.x; PMID: 21592305
  • Gustafsson B, Whitmore E, Tiru M. Neutralization of tetanus toxin by human monoclonal antibodies directed against tetanus toxin fragment C. Hybridoma 1993; 12:699 - 708; http://dx.doi.org/10.1089/hyb.1993.12.699; PMID: 8288271
  • Fitzsimmons SP, Clark KC, Wilkerson R, Shapiro MA. Inhibition of tetanus toxin fragment C binding to gangliosideG(T1b) by monoclonal antibodies recognizing different epitopes. Vaccine 2000; 19:114 - 21; http://dx.doi.org/10.1016/S0264-410X(00)00115-8; PMID: 10924793
  • Schengrund CL, DasGupta BR, Ringler NJ. Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J Neurochem 1991; 57:1024 - 32; http://dx.doi.org/10.1111/j.1471-4159.1991.tb08253.x; PMID: 1861141
  • Yousefi M, Tahmasebi F, Younesi V, Razavi A, Khoshnoodi J, Bayat AA, Abbasi E, Rabbani H, Jeddi-Tehrani M, Shokri F. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C. J Immunotoxicol 2013; Forthcoming http://dx.doi.org/10.3109/1547691X.2013.763872; PMID: 23369087
  • Diethelm-Okita BM, Okita DK, Banaszak L, Conti-Fine BM. Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins. J Infect Dis 2000; 181:1001 - 9; http://dx.doi.org/10.1086/315324; PMID: 10720523
  • Tymciu S, Durieux-Alexandrenne C, Wijkhuisen A, Créminon C, Frobert Y, Grassi J, Couraud JY, Boquet D. Enhancement of antibody responses in DNA vaccination using a vector encoding a universal T-helper cell epitope. DNA Cell Biol 2004; 23:395 - 402; http://dx.doi.org/10.1089/104454904323145281; PMID: 15231073
  • Holmgren J, Elwing H, Fredman P, Svennerholm L. Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor. Eur J Biochem 1980; 106:371 - 9; http://dx.doi.org/10.1111/j.1432-1033.1980.tb04583.x; PMID: 7398619
  • Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW. The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J BiolChem 2000; 275:8889 - 94; http://dx.doi.org/10.1074/jbc.275.12.8889; PMID: 10722735
  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J BiolChem 2001; 276:32274 - 81; http://dx.doi.org/10.1074/jbc.M103285200; PMID: 11418600
  • Rummel A, Bade S, Alves J, Bigalke H, Binz T. Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J MolBiol 2003; 326:835 - 47; http://dx.doi.org/10.1016/S0022-2836(02)01403-1; PMID: 12581644
  • Herreros J, Lalli G, Montecucco C, Schiavo G. Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 2000; 74:1941 - 50; http://dx.doi.org/10.1046/j.1471-4159.2000.0741941.x; PMID: 10800937
  • Slade AL, Schoeniger JS, Sasaki DY, Yip CM. In situ scanning probe microscopy studies of tetanus toxin-membrane interactions. Biophys J 2006; 91:4565 - 74; http://dx.doi.org/10.1529/biophysj.105.080457; PMID: 16997879
  • Gigliotti F, Insel RA. Protective human hybridoma antibody to tetanus toxin. J Clin Invest 1982; 70:1306 - 9; http://dx.doi.org/10.1172/JCI110730; PMID: 7174795
  • Trabaud MA, Lery L, Desgranges C. Human monoclonal antibodies with a protective activity against tetanus toxin. APMIS 1989; 97:671 - 6; http://dx.doi.org/10.1111/j.1699-0463.1989.tb00461.x; PMID: 2475149
  • Kamei M, Hashizume S, Sugimoto N, Ozutsumi K, Matsuda M. Establishment of stable mouse/human-human hybrid cell lines producing large amounts of anti-tetanus human monoclonal antibodies with high neutralizing activity. Eur J Epidemiol 1990; 6:386 - 97; http://dx.doi.org/10.1007/BF00151713; PMID: 2091939
  • Arunachalam B, Ghosh S, Talwar GP, Raghupathy R. A single human monoclonal antibody that confers total protection from tetanus. Hybridoma 1992; 11:165 - 79; http://dx.doi.org/10.1089/hyb.1992.11.165; PMID: 1376715
  • Ahnert-Hilger G, Bizzini B, Goretzki K, Müller H, Völckers C, Habermann E. Monoclonal antibodies against tetanus toxin and toxoid. Med MicrobiolImmunol 1983; 172:123 - 35; http://dx.doi.org/10.1007/BF02124513; PMID: 6193402
  • GreenspanNS, CooperLJ. Cooperative binding by mouse IgG3 antibodies: implications for functional affinity, effector function, and isotype restriction. Springer seminars in immunopathology: Springer, 1993:275-91.
  • Greenspan NS. Affinity, complementarity, cooperativity, and specificity in antibody recognition. Curr Top MicrobiolImmunol 2001; 260:65 - 85; http://dx.doi.org/10.1007/978-3-662-05783-4_5; PMID: 11443882
  • Scott N, Qazi O, Wright MJ, Fairweather NF, Deonarain MP. Characterisation of a panel of anti-tetanus toxin single-chain Fvs reveals cooperative binding. MolImmunol 2010; 47:1931 - 41; http://dx.doi.org/10.1016/j.molimm.2010.02.020; PMID: 20413159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.