1,107
Views
7
CrossRef citations to date
0
Altmetric
Review

Immunotherapeutic approaches to treat multiple myeloma

, , &
Pages 896-910 | Received 28 Oct 2013, Accepted 29 Nov 2013, Published online: 11 Dec 2013

References

  • Smith A, Howell D, Patmore R, Jack A, Roman E. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer 2011; 105:1684 - 92; http://dx.doi.org/10.1038/bjc.2011.450; PMID: 22045184
  • Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O, Marcos-Gragera R, Maynadié M, Simonetti A, Lutz JM, et al, HAEMACARE Working Group. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010; 116:3724 - 34; http://dx.doi.org/10.1182/blood-2010-05-282632; PMID: 20664057
  • Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364:1046 - 60; http://dx.doi.org/10.1056/NEJMra1011442; PMID: 21410373
  • Brenner H, Gondos A, Pulte D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008; 111:2521 - 6; http://dx.doi.org/10.1182/blood-2007-08-104984; PMID: 17901246
  • van de Velde HJ, Liu X, Chen G, Cakana A, Deraedt W, Bayssas M. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 2007; 92:1399 - 406; http://dx.doi.org/10.3324/haematol.11534; PMID: 18024376
  • Cavo M, Rajkumar SV, Palumbo A, Moreau P, Orlowski R, Bladé J, Sezer O, Ludwig H, Dimopoulos MA, Attal M, et al, International Myeloma Working Group. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. Blood 2011; 117:6063 - 73; http://dx.doi.org/10.1182/blood-2011-02-297325; PMID: 21447828
  • Kumar SK, Dingli D, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, Rajkumar SV, Litzow MR, Gertz MA. Autologous stem cell transplantation in patients of 70 years and older with multiple myeloma: Results from a matched pair analysis. Am J Hematol 2008; 83:614 - 7; http://dx.doi.org/10.1002/ajh.21191; PMID: 18429054
  • Koreth J, Cutler CS, Djulbegovic B, Behl R, Schlossman RL, Munshi NC, Richardson PG, Anderson KC, Soiffer RJ, Alyea EP 3rd. High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: A systematic review and meta-analysis of randomized controlled trials. Biol Blood Marrow Transplant 2007; 13:183 - 96; http://dx.doi.org/10.1016/j.bbmt.2006.09.010; PMID: 17241924
  • Gay F, Palumbo A. Management of older patients with multiple myeloma. Blood Rev 2011; 25:65 - 73; http://dx.doi.org/10.1016/j.blre.2010.10.003; PMID: 21295387
  • Waage A, Palumbo A, Hulin C, Beksac M, Fayers P, Mary JY, et al. Mp Versus Mpt for Previously Untreated Elderly Patients with Multiple Myeloma: A Meta Analysis of Survival of 1682 Individual Patient Data from 6 Randomized Clinical Trials. Haematol-Hematol J 2010; 95:235
  • San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, et al, VISTA Trial Investigators. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 2008; 359:906 - 17; http://dx.doi.org/10.1056/NEJMoa0801479; PMID: 18753647
  • Mateos MV, Richardson PG, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, et al. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 2010; 28:2259 - 66; http://dx.doi.org/10.1200/JCO.2009.26.0638; PMID: 20368561
  • Riddell SR, Berger C, Murata M, Randolph S, Warren EH. The graft versus leukemia response after allogeneic hematopoietic stem cell transplantation. Blood Rev 2003; 17:153 - 62; http://dx.doi.org/10.1016/S0268-960X(03)00007-9; PMID: 12818225
  • Goodyear O, Piper K, Khan N, Starczynski J, Mahendra P, Pratt G, Moss P. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 2005; 106:4217 - 24; http://dx.doi.org/10.1182/blood-2005-02-0563; PMID: 16144804
  • Grube M, Moritz S, Obermann EC, Rezvani K, Mackensen A, Andreesen R, Holler E. CD8+ T cells reactive to survivin antigen in patients with multiple myeloma. Clin Cancer Res 2007; 13:1053 - 60; http://dx.doi.org/10.1158/1078-0432.CCR-06-1722; PMID: 17289902
  • Bellucci R, Alyea EP, Chiaretti S, Wu CJ, Zorn E, Weller E, Wu B, Canning C, Schlossman R, Munshi NC, et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood 2005; 105:3945 - 50; http://dx.doi.org/10.1182/blood-2004-11-4463; PMID: 15692072
  • Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H, Beckhove P. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 2005; 105:2132 - 4; http://dx.doi.org/10.1182/blood-2004-01-0366; PMID: 15561890
  • Pérez-García A, De la Cámara R, Torres A, González M, Jiménez A, Gallardo D. Minor histocompatibility antigen HA-8 mismatch and clinical outcome after HLA-identical sibling donor allogeneic stem cell transplantation. Haematologica 2005; 90:1723 - 4; PMID: 16330460
  • Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J, Gratwohl A, Vogelsang GB, van Houwelingen HC, van Rood JJ. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334:281 - 5; http://dx.doi.org/10.1056/NEJM199602013340501; PMID: 8532022
  • Hobo W, Broen K, van der Velden WJ, Greupink-Draaisma A, Adisty N, Wouters Y, Kester M, Fredrix H, Jansen JH, van der Reijden B, et al. Association of disparities in known minor histocompatibility antigens with relapse-free survival and graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19:274 - 82; http://dx.doi.org/10.1016/j.bbmt.2012.09.008; PMID: 23022467
  • Markiewicz M, Siekiera U, Karolczyk A, Szymszal J, Helbig G, Wojnar J, Dzierzak-Mietla M, Kyrcz-Krzemien S. Immunogenic disparities of 11 minor histocompatibility antigens (mHAs) in HLA-matched unrelated allogeneic hematopoietic SCT. Bone Marrow Transplant 2009; 43:293 - 300; http://dx.doi.org/10.1038/bmt.2008.326; PMID: 18850018
  • Spellman S, Warden MB, Haagenson M, Pietz BC, Goulmy E, Warren EH, Wang T, Ellis TM. Effects of mismatching for minor histocompatibility antigens on clinical outcomes in HLA-matched, unrelated hematopoietic stem cell transplants. Biol Blood Marrow Transplant 2009; 15:856 - 63; http://dx.doi.org/10.1016/j.bbmt.2009.03.018; PMID: 19539218
  • Lin MT, Gooley T, Hansen JA, Tseng LH, Martin EG, Singleton K, Smith AG, Mickelson E, Petersdorf EW, Martin PJ. Absence of statistically significant correlation between disparity for the minor histocompatibility antigen-HA-1 and outcome after allogeneic hematopoietic cell transplantation. Blood 2001; 98:3172 - 3; http://dx.doi.org/10.1182/blood.V98.10.3172; PMID: 11721683
  • den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, Reinhardus C, Shabanowitz J, Offringa R, Hunt DF, et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1998; 279:1054 - 7; http://dx.doi.org/10.1126/science.279.5353.1054; PMID: 9461441
  • de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, Kester M, Leppert M, Schattenberg AV, de Witte T, et al. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 2005; 115:3506 - 16; http://dx.doi.org/10.1172/JCI24832; PMID: 16322791
  • Van Bergen CA, Rutten CE, Van Der Meijden ED, Van Luxemburg-Heijs SA, Lurvink EG, Houwing-Duistermaat JJ, Kester MG, Mulder A, Willemze R, Falkenburg JH, et al. High-throughput characterization of 10 new minor histocompatibility antigens by whole genome association scanning. Cancer Res 2010; 70:9073 - 83; http://dx.doi.org/10.1158/0008-5472.CAN-10-1832; PMID: 21062987
  • Oostvogels R, Minnema MC, van Elk M, Spaapen RM, te Raa GD, Giovannone B, et al. Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1. Leukemia: official journal of the Leukemia Society of America. Leukemia Research Fund, UK 2013; 27:642 - 9; http://dx.doi.org/10.1038/leu.2012.277
  • Godfrey J, Benson DM Jr.. The role of natural killer cells in immunity against multiple myeloma. Leuk Lymphoma 2012; 53:1666 - 76; http://dx.doi.org/10.3109/10428194.2012.676175; PMID: 22423650
  • Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A. Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Curr Opin Oncol 2007; 19:142 - 7; http://dx.doi.org/10.1097/CCO.0b013e3280148a1a; PMID: 17272987
  • Petersdorf EW. Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol 2008; 20:588 - 93; http://dx.doi.org/10.1016/j.coi.2008.06.014; PMID: 18674615
  • Alyea E, Weller E, Schlossman R, Canning C, Mauch P, Ng A, Fisher D, Gribben J, Freeman A, Parikh B, et al. Outcome after autologous and allogeneic stem cell transplantation for patients with multiple myeloma: impact of graft-versus-myeloma effect. Bone Marrow Transplant 2003; 32:1145 - 51; http://dx.doi.org/10.1038/sj.bmt.1704289; PMID: 14647268
  • Reynolds C, Ratanatharathorn V, Adams P, Braun T, Silver S, Ayash L, Carson E, Eisbruch A, Dawson LA, McDonagh K, et al. Allogeneic stem cell transplantation reduces disease progression compared to autologous transplantation in patients with multiple myeloma. Bone Marrow Transplant 2001; 27:801 - 7; http://dx.doi.org/10.1038/sj.bmt.1703006; PMID: 11477436
  • Crawley C, Iacobelli S, Björkstrand B, Apperley JF, Niederwieser D, Gahrton G. Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning. Blood 2007; 109:3588 - 94; http://dx.doi.org/10.1182/blood-2006-07-036848; PMID: 17158231
  • Levenga H, Schaap N, Maas F, Esendam B, Fredrix H, Greupink-Draaisma A, de Witte T, Dolstra H, Raymakers R. Partial T cell-depleted allogeneic stem cell transplantation following reduced-intensity conditioning creates a platform for immunotherapy with donor lymphocyte infusion and recipient dendritic cell vaccination in multiple myeloma. Biol Blood Marrow Transplant 2010; 16:320 - 32; http://dx.doi.org/10.1016/j.bbmt.2009.10.006; PMID: 19835972
  • Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LL, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997; 90:4206 - 11; PMID: 9354693
  • Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, Lamy T, Marit G, Maloisel F, Berthou C, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006; 107:3474 - 80; http://dx.doi.org/10.1182/blood-2005-09-3869; PMID: 16397129
  • Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, Giaccone L, Sorasio R, Omedè P, Baldi I, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356:1110 - 20; http://dx.doi.org/10.1056/NEJMoa065464; PMID: 17360989
  • Rosiñol L, Pérez-Simón JA, Sureda A, de la Rubia J, de Arriba F, Lahuerta JJ, González JD, Díaz-Mediavilla J, Hernández B, García-Frade J, et al, Programa para el Estudio y la Terapéutica de las Hemopatías Malignas y Grupo Español de Mieloma (PETHEMA/GEM). A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood 2008; 112:3591 - 3; http://dx.doi.org/10.1182/blood-2008-02-141598; PMID: 18612103
  • Lokhorst HM, van der Holt B, Cornelissen JJ, Kersten MJ, van Oers M, Raymakers R, Minnema MC, Zweegman S, Janssen JJ, Zijlmans M, et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood 2012; 119:6219 - 25, quiz 6399; http://dx.doi.org/10.1182/blood-2011-11-393801; PMID: 22442350
  • Gahrton G, Iacobelli S, Björkstrand B, Hegenbart U, Gruber A, Greinix H, Volin L, Narni F, Carella AM, Beksac M, et al, EBMT Chronic Malignancies Working Party Plasma Cell Disorders Subcommittee. Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: long-term results of the EBMT-NMAM2000 study. Blood 2013; 121:5055 - 63; http://dx.doi.org/10.1182/blood-2012-11-469452; PMID: 23482933
  • Krishnan A, Pasquini MC, Logan B, Stadtmauer EA, Vesole DH, Alyea E 3rd, Antin JH, Comenzo R, Goodman S, Hari P, et al, Blood Marrow Transplant Clinical Trials Network (BMT CTN). Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol 2011; 12:1195 - 203; http://dx.doi.org/10.1016/S1470-2045(11)70243-1; PMID: 21962393
  • Moreau P, Garban F, Attal M, Michallet M, Marit G, Hulin C, Benboubker L, Doyen C, Mohty M, Yakoub-Agha I, et al, IFM Group. Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma. Blood 2008; 112:3914 - 5; http://dx.doi.org/10.1182/blood-2008-07-168823; PMID: 18948589
  • Lokhorst H, Einsele H, Vesole D, Bruno B, San Miguel J, Pérez-Simon JA, Kröger N, Moreau P, Gahrton G, Gasparetto C, et al, International Myeloma Working Group. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J Clin Oncol 2010; 28:4521 - 30; http://dx.doi.org/10.1200/JCO.2010.29.7929; PMID: 20697091
  • Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother 2007; 56:1687 - 700; http://dx.doi.org/10.1007/s00262-007-0343-y; PMID: 17571260
  • Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 2008; 57:1719 - 26; http://dx.doi.org/10.1007/s00262-008-0515-4; PMID: 18408926
  • Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, Perrelli NF, Cosentino C, Torri F, Angius A, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361:478 - 88; http://dx.doi.org/10.1056/NEJMoa0811036; PMID: 19641204
  • Norde WJ, Hobo W, van der Voort R, Dolstra H. Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood 2012; 120:728 - 36; http://dx.doi.org/10.1182/blood-2012-02-412510; PMID: 22563087
  • Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110:296 - 304; http://dx.doi.org/10.1182/blood-2006-10-051482; PMID: 17363736
  • Hobo W, Norde WJ, Schaap N, Fredrix H, Maas F, Schellens K, Falkenburg JH, Korman AJ, Olive D, van der Voort R, et al. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. J Immunol 2012; 189:39 - 49; http://dx.doi.org/10.4049/jimmunol.1102807; PMID: 22634623
  • Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, et al. CD200 is a new prognostic factor in multiple myeloma. Blood 2006; 108:4194 - 7; http://dx.doi.org/10.1182/blood-2006-06-029355; PMID: 16946299
  • Hobo W, Maas F, Adisty N, de Witte T, Schaap N, van der Voort R, Dolstra H. siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood 2010; 116:4501 - 11; http://dx.doi.org/10.1182/blood-2010-04-278739; PMID: 20682852
  • Witzens-Harig M, Hose D, Jünger S, Pfirschke C, Khandelwal N, Umansky L, Seckinger A, Conrad H, Brackertz B, Rème T, et al. Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 2013; 121:4493 - 503; http://dx.doi.org/10.1182/blood-2012-05-429415; PMID: 23603913
  • Bonanno G, Mariotti A, Procoli A, Folgiero V, Natale D, De Rosa L, Majolino I, Novarese L, Rocci A, Gambella M, et al. Indoleamine 2,3-dioxygenase 1 (IDO1) activity correlates with immune system abnormalities in multiple myeloma. J Transl Med 2012; 10:247; http://dx.doi.org/10.1186/1479-5876-10-247; PMID: 23232072
  • Rebmann V, Schütt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR, Grosse-Wilde H. Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol 2007; 123:114 - 20; http://dx.doi.org/10.1016/j.clim.2006.11.007; PMID: 17218152
  • Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci U S A 2008; 105:1285 - 90; http://dx.doi.org/10.1073/pnas.0711293105; PMID: 18202175
  • Giannopoulos K, Kaminska W, Hus I, Dmoszynska A. The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer 2012; 106:546 - 52; http://dx.doi.org/10.1038/bjc.2011.575; PMID: 22223085
  • Klein B, Lu ZY, Gu ZJ, Costes V, Jourdan M, Rossi JF. Interleukin-10 and Gp130 cytokines in human multiple myeloma. Leuk Lymphoma 1999; 34:63 - 70; PMID: 10350333
  • Kovacs E. Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells?. Leuk Res 2010; 34:912 - 6; http://dx.doi.org/10.1016/j.leukres.2009.08.012; PMID: 19762082
  • D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 1993; 178:1041 - 8; http://dx.doi.org/10.1084/jem.178.3.1041; PMID: 8102388
  • Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 2007; 13:5262 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-07-1157; PMID: 17875754
  • Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 2008; 222:206 - 21; http://dx.doi.org/10.1111/j.1600-065X.2008.00610.x; PMID: 18364004
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6:295 - 307; http://dx.doi.org/10.1038/nri1806; PMID: 16557261
  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004; 21:589 - 601; http://dx.doi.org/10.1016/j.immuni.2004.09.002; PMID: 15485635
  • Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, Ashcroft AJ, Owen RG, Selby PJ, Cook G. CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(-)CD8(-)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 2009; 144:686 - 95; http://dx.doi.org/10.1111/j.1365-2141.2008.07530.x; PMID: 19133978
  • De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013; 23:277 - 86; http://dx.doi.org/10.1016/j.ccr.2013.02.013; PMID: 23518347
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162 - 74; http://dx.doi.org/10.1038/nri2506; PMID: 19197294
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122:787 - 95; http://dx.doi.org/10.1172/JCI59643; PMID: 22378047
  • Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, Raje N, Munshi NC, Richardson PG, Anderson KC. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121:2975 - 87; http://dx.doi.org/10.1182/blood-2012-08-448548; PMID: 23321256
  • Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 2013; 190:3815 - 23; http://dx.doi.org/10.4049/jimmunol.1203373; PMID: 23460744
  • Suyanı E, Sucak GT, Akyürek N, Sahin S, Baysal NA, Yağcı M, Haznedar R. Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Ann Hematol 2013; 92:669 - 77; http://dx.doi.org/10.1007/s00277-012-1652-6; PMID: 23334187
  • Raitakari M, Brown RD, Gibson J, Joshua DE. T cells in myeloma. Hematol Oncol 2003; 21:33 - 42; http://dx.doi.org/10.1002/hon.704; PMID: 12605421
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725 - 33; http://dx.doi.org/10.1056/NEJMoa1103849; PMID: 21830940
  • Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118:4817 - 28; http://dx.doi.org/10.1182/blood-2011-04-348540; PMID: 21849486
  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119:2709 - 20; http://dx.doi.org/10.1182/blood-2011-10-384388; PMID: 22160384
  • Riddell SR, Jensen MC, June CH. Chimeric antigen receptor--modified T cells: clinical translation in stem cell transplantation and beyond. Biol Blood Marrow Transplant 2013; 19:Suppl S2 - 5; http://dx.doi.org/10.1016/j.bbmt.2012.10.021; PMID: 23085599
  • Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther 2011; 18:509 - 16; http://dx.doi.org/10.1038/gt.2010.174; PMID: 21209626
  • Westwood JA, Murray WK, Trivett M, Haynes NM, Solomon B, Mileshkin L, Ball D, Michael M, Burman A, Mayura-Guru P, et al. The Lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum. J Immunother 2009; 32:292 - 301; http://dx.doi.org/10.1097/CJI.0b013e31819b7c8e; PMID: 19242371
  • Peinert S, Prince HM, Guru PM, Kershaw MH, Smyth MJ, Trapani JA, Gambell P, Harrison S, Scott AM, Smyth FE, et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 2010; 17:678 - 86; http://dx.doi.org/10.1038/gt.2010.21; PMID: 20200563
  • Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, Gress RE, Hakim FT, Kochenderfer JN. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19:2048 - 60; http://dx.doi.org/10.1158/1078-0432.CCR-12-2422; PMID: 23344265
  • Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma--a feasibility study. Blood 1999; 93:2411 - 9; PMID: 10090953
  • Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000; 6:621 - 7; http://dx.doi.org/10.1016/S1083-8791(00)70027-9; PMID: 11128812
  • Titzer S, Christensen O, Manzke O, Tesch H, Wolf J, Emmerich B, Carsten C, Diehl V, Bohlen H. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 2000; 108:805 - 16; http://dx.doi.org/10.1046/j.1365-2141.2000.01958.x; PMID: 10792287
  • Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S, Cottler-Fox M, Barlogie B, Tricot G, van Rhee F. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 2010; 150:554 - 64; http://dx.doi.org/10.1111/j.1365-2141.2010.08286.x; PMID: 20618329
  • Röllig C, Schmidt C, Bornhäuser M, Ehninger G, Schmitz M, Auffermann-Gretzinger S. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother 2011; 34:100 - 6; http://dx.doi.org/10.1097/CJI.0b013e3181facf48; PMID: 21150718
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003; 9:5091 - 100; PMID: 14613986
  • Turtle CJ, Brown RD, Joshua DE, Hart DN. DC in multiple myeloma immunotherapy. Cytotherapy 2004; 6:128 - 37; http://dx.doi.org/10.1080/14653240410005357; PMID: 15203989
  • Hobo W, Strobbe L, Maas F, Fredrix H, Greupink-Draaisma A, Esendam B, de Witte T, Preijers F, Levenga H, van Rees B, et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 2013; 62:1381 - 92; http://dx.doi.org/10.1007/s00262-013-1438-2; PMID: 23728352
  • Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6:1011 - 7; http://dx.doi.org/10.1038/79519; PMID: 10973321
  • Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, Wu Z, Joyce R, Levine JD, Dombagoda D, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2011; 117:393 - 402; http://dx.doi.org/10.1182/blood-2010-04-277137; PMID: 21030562
  • Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, Dey BR, Somaiya P, Mills H, Campigotto F, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19:3640 - 8; http://dx.doi.org/10.1158/1078-0432.CCR-13-0282; PMID: 23685836
  • Hobo W, Novobrantseva TI, Fredrix H, Wong J, Milstein S, Epstein-Barash H, Liu J, Schaap N, van der Voort R, Dolstra H. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother 2013; 62:285 - 97; http://dx.doi.org/10.1007/s00262-012-1334-1; PMID: 22903385
  • Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34:409 - 18; http://dx.doi.org/10.1097/CJI.0b013e31821ca6ce; PMID: 21577144
  • Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14:3044 - 51; http://dx.doi.org/10.1158/1078-0432.CCR-07-4079; PMID: 18483370
  • Benson DM Jr., Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116:2286 - 94; http://dx.doi.org/10.1182/blood-2010-02-271874; PMID: 20460501
  • Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005; 86:209 - 39; http://dx.doi.org/10.1016/S0065-2776(04)86006-1; PMID: 15705423
  • Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7:329 - 39; http://dx.doi.org/10.1038/nri2073; PMID: 17438573
  • Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316:889 - 97; http://dx.doi.org/10.1056/NEJM198704093161501; PMID: 3493432
  • Peest D, Leo R, Bloche S, Hein R, Stannat-Kiessling S, Tschechne B, Fett W, Harms P, Hoffmann L, Bartl R, et al. Low-dose recombinant interleukin-2 therapy in advanced multiple myeloma. Br J Haematol 1995; 89:328 - 37; http://dx.doi.org/10.1111/j.1365-2141.1995.tb03308.x; PMID: 7873383
  • Einhorn S, Ahre A, Blomgren H, Johansson B, Mellstedt H, Strander H. Interferon and natural killer activity in multiple myeloma. Lack of correlation between interferon-induced enhancement of natural killer activity and clinical response to human interferon-alpha. Int J Cancer 1982; 30:167 - 72; http://dx.doi.org/10.1002/ijc.2910300207; PMID: 6182111
  • Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, Chauncey TR, Maloney DG, Storb R. What is the role for donor natural killer cells after nonmyeloablative conditioning?. Biol Blood Marrow Transplant 2009; 15:580 - 8; http://dx.doi.org/10.1016/j.bbmt.2009.01.018; PMID: 19361750
  • Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD, Bornhäuser M, Christiansen F, Gratwohl A, Morishima Y, et al, International Histocompatibility Working Group. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant 2006; 12:828 - 36; http://dx.doi.org/10.1016/j.bbmt.2006.04.008; PMID: 16864053
  • Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, Maccario R, Bonetti F, Wojnar J, Martinetti M, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102:814 - 9; http://dx.doi.org/10.1182/blood-2003-01-0091; PMID: 12689936
  • Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA, Boudreau C, Nelson G, Oudshoorn M, van Rood J, et al, KIR Study Group, Center for International Blood and Marrow Transplantation Research. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 2006; 12:876 - 84; http://dx.doi.org/10.1016/j.bbmt.2006.05.007; PMID: 16864058
  • Morishima Y, Yabe T, Matsuo K, Kashiwase K, Inoko H, Saji H, Yamamoto K, Maruya E, Akatsuka Y, Onizuka M, et al, Japan Marrow Donor Program. Effects of HLA allele and killer immunoglobulin-like receptor ligand matching on clinical outcome in leukemia patients undergoing transplantation with T-cell-replete marrow from an unrelated donor. Biol Blood Marrow Transplant 2007; 13:315 - 28; http://dx.doi.org/10.1016/j.bbmt.2006.10.027; PMID: 17317585
  • Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P. Human diversity in killer cell inhibitory receptor genes. Immunity 1997; 7:753 - 63; http://dx.doi.org/10.1016/S1074-7613(00)80394-5; PMID: 9430221
  • Symons HJ, Leffell MS, Rossiter ND, Zahurak M, Jones RJ, Fuchs EJ. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant 2010; 16:533 - 42; http://dx.doi.org/10.1016/j.bbmt.2009.11.022; PMID: 19961944
  • Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J, Le CT, Marsh SG, Guethlein LA, Parham P, Miller JS, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood 2009; 113:726 - 32; http://dx.doi.org/10.1182/blood-2008-07-171926; PMID: 18945962
  • Kroger N, Zabelina T, Berger J, Duske H, Klyuchnikov E, Binder T, et al. Donor KIR haplotype B improves progression-free and overall survival after allogeneic hematopoietic stem cell transplantation for multiple myeloma. Leukemia: official journal of the Leukemia Society of America. Leukemia Research Fund, UK 2011; 25:1657 - 61; http://dx.doi.org/10.1038/leu.2011.138
  • Shi J, Tricot G, Szmania S, Rosen N, Garg TK, Malaviarachchi PA, Moreno A, Dupont B, Hsu KC, Baxter-Lowe LA, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 2008; 143:641 - 53; http://dx.doi.org/10.1111/j.1365-2141.2008.07340.x; PMID: 18950462
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105:3051 - 7; http://dx.doi.org/10.1182/blood-2004-07-2974; PMID: 15632206
  • Curti A, Ruggeri L, D’Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011; 118:3273 - 9; http://dx.doi.org/10.1182/blood-2011-01-329508; PMID: 21791425
  • Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, de Witte T, Schaap N, Dolstra H. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 2011; 6:e20740; http://dx.doi.org/10.1371/journal.pone.0020740; PMID: 21698239
  • Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell 2012; 148:1081 - 4; http://dx.doi.org/10.1016/j.cell.2012.02.034; PMID: 22424219
  • van de Donk NW, Kamps S, Mutis T, Lokhorst HM. Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia: official journal of the Leukemia Society of America. Leukemia Research Fund, UK 2012; 26:199 - 213; http://dx.doi.org/10.1038/leu.2011.214
  • Romagné F, André P, Spee P, Zahn S, Anfossi N, Gauthier L, Capanni M, Ruggeri L, Benson DM Jr., Blaser BW, et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114:2667 - 77; http://dx.doi.org/10.1182/blood-2009-02-206532; PMID: 19553639
  • Benson DM Jr., Bakan CE, Zhang S, Collins SM, Liang J, Srivastava S, Hofmeister CC, Efebera Y, Andre P, Romagne F, et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 2011; 118:6387 - 91; http://dx.doi.org/10.1182/blood-2011-06-360255; PMID: 22031859
  • Benson DM Jr., Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, Abonour R, Bakan C, Andre P, Efebera Y, Tiollier J, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 2012; 120:4324 - 33; http://dx.doi.org/10.1182/blood-2012-06-438028; PMID: 23033266
  • Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 2008; 14:2775 - 84; http://dx.doi.org/10.1158/1078-0432.CCR-07-4246; PMID: 18451245
  • Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008; 112:1329 - 37; http://dx.doi.org/10.1182/blood-2007-08-107292; PMID: 17906076
  • Cruz-Munoz ME, Dong Z, Shi X, Zhang S, Veillette A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol 2009; 10:297 - 305; http://dx.doi.org/10.1038/ni.1693; PMID: 19151721
  • Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, Fry J, Afar DE, Singhal AK. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 2012; 120:552 - 9; http://dx.doi.org/10.1182/blood-2011-06-360552; PMID: 22184404
  • Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, Kaufman JL, Leleu X, Tsao LC, Westland C, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2012; 30:1953 - 9; http://dx.doi.org/10.1200/JCO.2011.37.2649; PMID: 22547589
  • Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A, Richardson PG, Afar DE, Singhal AK, Anderson KC. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 2012; 30:1960 - 5; http://dx.doi.org/10.1200/JCO.2011.37.7069; PMID: 22291084
  • Andhavarapu S, Roy V. Immunomodulatory drugs in multiple myeloma. Expert Rev Hematol 2013; 6:69 - 82; http://dx.doi.org/10.1586/ehm.12.62; PMID: 23373782
  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP, Anderson KC. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99:4525 - 30; http://dx.doi.org/10.1182/blood.V99.12.4525; PMID: 12036884
  • Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20:4519 - 27; http://dx.doi.org/10.1038/sj.onc.1204623; PMID: 11494147
  • Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia: official journal of the Leukemia Society of America. Leukemia Research Fund, UK 2001; 15:1950 - 61; http://dx.doi.org/10.1038/sj.leu.2402295
  • Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ, Patterson RT, Stirling DI, Kaplan G. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163:380 - 6; PMID: 10384139
  • Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98:210 - 6; http://dx.doi.org/10.1182/blood.V98.1.210; PMID: 11418482
  • Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128:192 - 203; http://dx.doi.org/10.1111/j.1365-2141.2004.05286.x; PMID: 15638853
  • Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J, Song W, Podar K, Hideshima T, Chauhan D, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 2005; 65:11712 - 20; http://dx.doi.org/10.1158/0008-5472.CAN-05-1657; PMID: 16357183
  • Schey SA, Fields P, Bartlett JB, Clarke IA, Ashan G, Knight RD, Streetly M, Dalgleish AG. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 2004; 22:3269 - 76; http://dx.doi.org/10.1200/JCO.2004.10.052; PMID: 15249589
  • Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003; 29:Suppl 1 3 - 9; http://dx.doi.org/10.1016/S0305-7372(03)00081-1; PMID: 12738238
  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr., Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107:4907 - 16; http://dx.doi.org/10.1182/blood-2005-08-3531; PMID: 16507771
  • Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A, Harousseau JL. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012; 120:947 - 59; http://dx.doi.org/10.1182/blood-2012-04-403733; PMID: 22645181
  • Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr., Barlogie B, et al. Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 2008; 111:1309 - 17; http://dx.doi.org/10.1182/blood-2007-03-078535; PMID: 17947507
  • Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredini D, Berg M, Childs R. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res 2006; 66:7317 - 25; http://dx.doi.org/10.1158/0008-5472.CAN-06-0680; PMID: 16849582
  • Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 2009; 113:6120 - 7; http://dx.doi.org/10.1182/blood-2008-11-190421; PMID: 19202127
  • Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2009; 113:3503 - 11; http://dx.doi.org/10.1182/blood-2008-08-173914; PMID: 19098271
  • Jardine L, Hambleton S, Bigley V, Pagan S, Wang XN, Collin M. Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leuk Lymphoma 2013; 54:167 - 73; http://dx.doi.org/10.3109/10428194.2012.708026; PMID: 22742576
  • Wang X, Ottosson A, Ji C, Feng X, Nordenskjöld M, Henter JI, Fadeel B, Zheng C. Proteasome inhibition induces apoptosis in primary human natural killer cells and suppresses NKp46-mediated cytotoxicity. Haematologica 2009; 94:470 - 8; http://dx.doi.org/10.3324/haematol.13783; PMID: 19229052
  • Feng X, Yan J, Wang Y, Zierath JR, Nordenskjöld M, Henter JI, Fadeel B, Zheng C. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol 2010; 47:2388 - 96; http://dx.doi.org/10.1016/j.molimm.2010.05.003; PMID: 20542572
  • Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene 2007; 26:5420 - 32; http://dx.doi.org/10.1038/sj.onc.1210610; PMID: 17694083
  • Siegel DS, Dimopoulos MA, Yoon S-S, Laubach JP, Kaufman JL, Goldschmidt H, Reece DE, Leleu X, Durrant S, Offner FC, et al. Vantage 095: vorinostat in combination with bortezomib in salvage multiple myeloma patients: final study results of a global phase 2b trial. [abstract 480]. Blood 2011; 114
  • Dimopoulos MA, Jagannath S, Yoon S-S, Siegel DS, Lonial S, Hajek R, et al. Vantage 088: vorinostat in combination with Bortezomib in patients with relapsed/refractory multiple myeloma: results of a global, randomized phase 3 trial. ASH Annu Meeting Abstr 2011; 118:811
  • Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 2005; 65:11136 - 45; http://dx.doi.org/10.1158/0008-5472.CAN-05-0599; PMID: 16322264
  • Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M, et al. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia: official journal of the Leukemia Society of America. Leukemia Research Fund, UK 2007; 21:2103 - 8; http://dx.doi.org/10.1038/sj.leu.2404862
  • Zhang C, Wang Y, Zhou Z, Zhang J, Tian Z. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immunother 2009; 58:1275 - 85; http://dx.doi.org/10.1007/s00262-008-0645-8; PMID: 19139882
  • Schmudde M, Braun A, Pende D, Sonnemann J, Klier U, Beck JF, Moretta L, Bröker BM. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett 2008; 272:110 - 21; http://dx.doi.org/10.1016/j.canlet.2008.06.027; PMID: 18718708
  • Fiegler N, Textor S, Arnold A, Rölle A, Oehme I, Breuhahn K, Moldenhauer G, Witzens-Harig M, Cerwenka A. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood 2013; 122:684 - 93; http://dx.doi.org/10.1182/blood-2013-02-482513; PMID: 23801635
  • Chu J, Deng Y, Benson DM Jr., He S, Hughes T, Zhang J, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance In Vitro and In Vivo anti-tumor activity against human multiple myeloma. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 2013.
  • Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, Horst HA, Raff T, Viardot A, Schmid M, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29:2493 - 8; http://dx.doi.org/10.1200/JCO.2010.32.7270; PMID: 21576633

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.