2,304
Views
16
CrossRef citations to date
0
Altmetric
Review

Emerging immunotherapies for rheumatoid arthritis

, , &
Pages 822-837 | Received 07 Nov 2013, Accepted 20 Jan 2014, Published online: 17 Feb 2014

References

  • Singh JA, Christensen R, Wells GA, Suarez-Almazor ME, Buchbinder R, Lopez-Olivo MA, Tanjong Ghogomu E, Tugwell P. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev 2009; CD007848; PMID: 19821440
  • Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther 2009; 11:Suppl 1 S1; http://dx.doi.org/10.1186/ar2666; PMID: 19368701
  • Tanaka Y, Takeuchi T, Mimori T, Saito K, Nawata M, Kameda H, Nojima T, Miyasaka N, Koike T, RRR study investigators. Discontinuation of infliximab after attaining low disease activity in patients with rheumatoid arthritis: RRR (remission induction by Remicade in RA) study. Ann Rheum Dis 2010; 69:1286 - 91; http://dx.doi.org/10.1136/ard.2009.121491; PMID: 20360136
  • Li L, Li G, Yu C, Li Y. A meta-analysis of the role of p38 mitogen-activated protein kinase inhibitors in patients with active rheumatoid arthritis. Clin Rheumatol 2013; 32:1697 - 702; http://dx.doi.org/10.1007/s10067-013-2340-1; PMID: 23900576
  • Salgado E, Maneiro JR, Carmona L, Gomez-Reino JJ. Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis. Ann Rheum Dis 2013; http://dx.doi.org/10.1136/annrheumdis-2012-203116; PMID: 23599436
  • O’shea JJ. Targeting the Jak/STAT pathway for immunosuppression. Ann Rheum Dis 2004; 63:Suppl 2 ii67 - 71; PMID: 15479876
  • Tanaka Y, Yamaoka K. JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Mod Rheumatol 2013; 23:415 - 24; http://dx.doi.org/10.3109/s10165-012-0799-2; PMID: 23212593
  • Tanaka Y, Maeshima K, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis 2012; 71:Suppl 2 i70 - 4; http://dx.doi.org/10.1136/annrheumdis-2011-200595; PMID: 22460142
  • Menet CJ, Rompaey LV, Geney R. Advances in the discovery of selective JAK inhibitors. Prog Med Chem 2013; 52:153 - 223; PMID: 23384668
  • Kelly V, Genovese M. Novel small molecule therapeutics in rheumatoid arthritis. Rheumatology (Oxford) 2013; 52:1155 - 62; http://dx.doi.org/10.1093/rheumatology/kes367; PMID: 23297340
  • Feist E, Burmester GR. Small molecules targeting JAKs--a new approach in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 2013; 52:1352 - 7; http://dx.doi.org/10.1093/rheumatology/kes417; PMID: 23378664
  • O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013; 72:Suppl 2 ii111 - 5; PMID: 23532440
  • Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, Warner JD, Tanaka M, Steward-Tharp SM, Gadina M, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 2011; 186:4234 - 43; http://dx.doi.org/10.4049/jimmunol.1003668; PMID: 21383241
  • Bromberg J, Darnell JE Jr.. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000; 19:2468 - 73; http://dx.doi.org/10.1038/sj.onc.1203476; PMID: 10851045
  • Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA. Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Immunity 2012; 36:239 - 50; http://dx.doi.org/10.1016/j.immuni.2011.12.015; PMID: 22342841
  • Migita K, et al. Inhibition of JAK/STAT signaling pathway in rheumatoid synovial fibroblasts using small molecule compounds. Clin Exp Immunol 2013; http://dx.doi.org/10.1111/cei.12190; PMID: 23968543
  • Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611 - 29; http://dx.doi.org/10.1038/nrd4088; PMID: 23903221
  • Lindvall JM, Blomberg KE, Väliaho J, Vargas L, Heinonen JE, Berglöf A, Mohamed AJ, Nore BF, Vihinen M, Smith CI. Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005; 203:200 - 15; http://dx.doi.org/10.1111/j.0105-2896.2005.00225.x; PMID: 15661031
  • Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ, Carano RA, Darrow J, Davies DR, DeForge LE, et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 2011; 7:41 - 50; http://dx.doi.org/10.1038/nchembio.481; PMID: 21113169
  • Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol 2012; 31:119 - 32; http://dx.doi.org/10.3109/08830185.2012.664797; PMID: 22449073
  • Mócsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10:387 - 402; http://dx.doi.org/10.1038/nri2765; PMID: 20467426
  • Cha HS, Boyle DL, Inoue T, Schoot R, Tak PP, Pine P, Firestein GS. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes. J Pharmacol Exp Ther 2006; 317:571 - 8; http://dx.doi.org/10.1124/jpet.105.097436; PMID: 16452391
  • Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 2006; 319:998 - 1008; http://dx.doi.org/10.1124/jpet.106.109058; PMID: 16946104
  • Pine PR, Chang B, Schoettler N, Banquerigo ML, Wang S, Lau A, Zhao F, Grossbard EB, Payan DG, Brahn E. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol 2007; 124:244 - 57; http://dx.doi.org/10.1016/j.clim.2007.03.543; PMID: 17537677
  • Jakus Z, Simon E, Balázs B, Mócsai A. Genetic deficiency of Syk protects mice from autoantibody-induced arthritis. Arthritis Rheum 2010; 62:1899 - 910; PMID: 20201079
  • Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006; 7:1326 - 33; http://dx.doi.org/10.1038/ni1407; PMID: 17086186
  • Weichhart T, Säemann MD. The multiple facets of mTOR in immunity. Trends Immunol 2009; 30:218 - 26; http://dx.doi.org/10.1016/j.it.2009.02.002; PMID: 19362054
  • Laragione T, Gulko PS. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 2010; 16:352 - 8; http://dx.doi.org/10.2119/molmed.2010.00049; PMID: 20517583
  • Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 2010; 62:2294 - 302; http://dx.doi.org/10.1002/art.27504; PMID: 20506288
  • Lin JT, Stein EA, Wong MT, Kalpathy KJ, Su LL, Utz PJ, Robinson WH, Fathman CG. Differential mTOR and ERK pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis. Clin Immunol 2012; 142:127 - 38; http://dx.doi.org/10.1016/j.clim.2011.09.008; PMID: 22075384
  • Mitra A, Raychaudhuri SK, Raychaudhuri SP. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 2012; 60:38 - 42; http://dx.doi.org/10.1016/j.cyto.2012.06.316; PMID: 22840496
  • Randis TM, Puri KD, Zhou H, Diacovo TG. Role of PI3Kdelta and PI3Kgamma in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol 2008; 38:1215 - 24; http://dx.doi.org/10.1002/eji.200838266; PMID: 18412166
  • Lopez-Hoyos M, Rodrigo E, Fernandez-Fresnedo G, Martinez-Taboada VM, Valero R, Arias M. Lack of effect of rapamycin in anti-CCP antibody production in a rheumatoid arthritis kidney allograft recipient. Clin Exp Rheumatol 2005; 23:529 - 31; PMID: 16095125
  • Foroncewicz B, Mucha K, Paczek L, Chmura A, Rowiński W. Efficacy of rapamycin in patient with juvenile rheumatoid arthritis. Transpl Int 2005; 18:366 - 8; http://dx.doi.org/10.1111/j.1432-2277.2004.00070.x; PMID: 15730500
  • Bruyn GA, Tate G, Caeiro F, Maldonado-Cocco J, Westhovens R, Tannenbaum H, Bell M, Forre O, Bjorneboe O, Tak PP, et al, RADD Study Group. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann Rheum Dis 2008; 67:1090 - 5; http://dx.doi.org/10.1136/ard.2007.078808; PMID: 18037627
  • Britten CD. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 2013; 71:1395 - 409; http://dx.doi.org/10.1007/s00280-013-2121-1; PMID: 23443307
  • Camps M, Rückle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Françon B, et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 2005; 11:936 - 43; PMID: 16127437
  • Hayer S, Pundt N, Peters MA, Wunrau C, Kühnel I, Neugebauer K, Strietholt S, Zwerina J, Korb A, Penninger J, et al. PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis. FASEB J 2009; 23:4288 - 98; http://dx.doi.org/10.1096/fj.09-135160; PMID: 19734303
  • Müller-Ladner U, Gay RE, Gay S. Role of nuclear factor kappaB in synovial inflammation. Curr Rheumatol Rep 2002; 4:201 - 7; http://dx.doi.org/10.1007/s11926-002-0066-1; PMID: 12010604
  • Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2013; 170:748 - 64; http://dx.doi.org/10.1111/bph.12337; PMID: 23957828
  • Dharmapatni AA, Smith MD, Crotti TN, Holding CA, Vincent C, Weedon HM, Zannettino AC, Zheng TS, Findlay DM, Atkins GJ, et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res Ther 2011; 13:R51; http://dx.doi.org/10.1186/ar3294; PMID: 21435232
  • Kamijo S, Nakajima A, Kamata K, Kurosawa H, Yagita H, Okumura K. Involvement of TWEAK/Fn14 interaction in the synovial inflammation of RA. Rheumatology (Oxford) 2008; 47:442 - 50; http://dx.doi.org/10.1093/rheumatology/ken006; PMID: 18310134
  • Park JS, Park MK, Lee SY, Oh HJ, Lim MA, Cho WT, Kim EK, Ju JH, Park YW, Park SH, et al. TWEAK promotes the production of Interleukin-17 in rheumatoid arthritis. Cytokine 2012; 60:143 - 9; http://dx.doi.org/10.1016/j.cyto.2012.06.285; PMID: 22819243
  • Wisniacki N, Amaravadi L, Galluppi GR, Zheng TS, Zhang R, Kong J, Burkly LC. Safety, tolerability, pharmacokinetics, and pharmacodynamics of anti-TWEAK monoclonal antibody in patients with rheumatoid arthritis. Clin Ther 2013; 35:1137 - 49; http://dx.doi.org/10.1016/j.clinthera.2013.06.008; PMID: 23928094
  • Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289:1504 - 8; http://dx.doi.org/10.1126/science.289.5484.1504; PMID: 10968780
  • Poubelle PE, Chakravarti A, Fernandes MJ, Doiron K, Marceau AA. Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res Ther 2007; 9:R25; http://dx.doi.org/10.1186/ar2137; PMID: 17341304
  • Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K, Scheel-Toellner D. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 2011; 70:2022 - 8; http://dx.doi.org/10.1136/ard.2011.153312; PMID: 21742639
  • Horwood N. Lymphocyte-derived cytokines in inflammatory arthritis. Autoimmunity 2008; 41:230 - 8; http://dx.doi.org/10.1080/08916930701694766; PMID: 18365837
  • Naidu VG, Dinesh Babu KR, Thwin MM, Satish RL, Kumar PV, Gopalakrishnakone P. RANKL targeted peptides inhibit osteoclastogenesis and attenuate adjuvant induced arthritis by inhibiting NF-κB activation and down regulating inflammatory cytokines. Chem Biol Interact 2013; 203:467 - 79; http://dx.doi.org/10.1016/j.cbi.2012.12.016; PMID: 23333834
  • Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study Group. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 2008; 58:1299 - 309; http://dx.doi.org/10.1002/art.23417; PMID: 18438830
  • Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005; 4:686 - 92; http://dx.doi.org/10.1158/1535-7163.MCT-04-0338; PMID: 15827343
  • Yannaki E, Papadopoulou A, Athanasiou E, Kaloyannidis P, Paraskeva A, Bougiouklis D, Palladas P, Yiangou M, Anagnostopoulos A. The proteasome inhibitor bortezomib drastically affects inflammation and bone disease in adjuvant-induced arthritis in rats. Arthritis Rheum 2010; 62:3277 - 88; http://dx.doi.org/10.1002/art.27690; PMID: 20722034
  • Lee SW, Kim JH, Park YB, Lee SK. Bortezomib attenuates murine collagen-induced arthritis. Ann Rheum Dis 2009; 68:1761 - 7; http://dx.doi.org/10.1136/ard.2008.097709; PMID: 19054826
  • van der Heijden JW, Oerlemans R, Lems WF, Scheper RJ, Dijkmans BA, Jansen G. The proteasome inhibitor bortezomib inhibits the release of NFkappaB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol 2009; 27:92 - 8; PMID: 19327235
  • Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, Barnard J, Nevarez S, Goldman BI, Kirk CJ, et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012; 64:493 - 503; http://dx.doi.org/10.1002/art.33333; PMID: 21905015
  • Nikolova-Ganeva KA, Gesheva VV, Todorov TA, Voll RE, Vassilev TL. Targeted silencing of DNA-specific B cells combined with partial plasma cell depletion displays additive effects on delaying disease onset in lupus-prone mice. Clin Exp Immunol 2013; 174:221 - 8; PMID: 23808414
  • Johnson BA 3rd, Baban B, Mellor AL. Targeting the immunoregulatory indoleamine 2,3 dioxygenase pathway in immunotherapy. Immunotherapy 2009; 1:645 - 61; PMID: 20161103
  • Kavousanaki M, Makrigiannakis A, Boumpas D, Verginis P. Novel role of plasmacytoid dendritic cells in humans: induction of interleukin-10-producing Treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding to therapy. Arthritis Rheum 2010; 62:53 - 63; http://dx.doi.org/10.1002/art.25037; PMID: 20039433
  • Takakubo Y, Takagi M, Maeda K, Tamaki Y, Sasaki A, Asano T, Fukushima S, Kiyoshige Y, Orui H, Ogino T, et al. Distribution of myeloid dendritic cells and plasmacytoid dendritic cells in the synovial tissues of rheumatoid arthritis. J Rheumatol 2008; 35:1919 - 31; PMID: 18785315
  • Pigott E, Mandik-Nayak L. Addition of an indoleamine 2,3,-dioxygenase inhibitor to B cell-depletion therapy blocks autoreactive B cell activation and recurrence of arthritis in K/BxN mice. Arthritis Rheum 2012; 64:2169 - 78; http://dx.doi.org/10.1002/art.34406; PMID: 22294267
  • Szántó S, Koreny T, Mikecz K, Glant TT, Szekanecz Z, Varga J. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Res Ther 2007; 9:R50; http://dx.doi.org/10.1186/ar2205; PMID: 17511858
  • Criado G, Simelyte E, Inglis JJ, Essex D, Williams RO. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. Arthritis Rheum 2009; 60:1342 - 51; http://dx.doi.org/10.1002/art.24446; PMID: 19404944
  • Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum 2009; 60:380 - 9; http://dx.doi.org/10.1002/art.24229; PMID: 19180475
  • Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, et al. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol 2012; 188:4913 - 20; http://dx.doi.org/10.4049/jimmunol.1103668; PMID: 22516958
  • Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ, Matsushima K, Cao Q, Zhang Y. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition. J Immunol 2006; 177:8226 - 33; PMID: 17114500
  • Kumar N, Goldminz AM, Kim N, Gottlieb AB. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med 2013; 11:96; http://dx.doi.org/10.1186/1741-7015-11-96; PMID: 23557064
  • Schett G, Wollenhaupt J, Papp K, Joos R, Rodrigues JF, Vessey AR, Hu C, Stevens R, de Vlam KL. Oral apremilast in the treatment of active psoriatic arthritis: results of a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2012; 64:3156 - 67; http://dx.doi.org/10.1002/art.34627; PMID: 22806399
  • De Souza A, Strober BE, Merola JF, Oliver S, Franks AG Jr.. Apremilast for discoid lupus erythematosus: results of a phase 2, open-label, single-arm, pilot study. J Drugs Dermatol 2012; 11:1224 - 6; PMID: 23134988
  • McCann FE, Palfreeman AC, Andrews M, Perocheau DP, Inglis JJ, Schafer P, Feldmann M, Williams RO, Brennan FM. Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha from human rheumatoid synovial cells and ameliorates experimental arthritis. Arthritis Res Ther 2010; 12:R107; http://dx.doi.org/10.1186/ar3041; PMID: 20525198
  • Schett G, Papp KWJ. Apremilast is active in the treatment of rheumatoid arthritis. [abstract 1258] Arthritis Rheum 2009;
  • Cush JRI. The controlled trial of Apremilast for rheumatoid arthritis treatment. http://clinicaltrials.gov/show/NCT01250548
  • Huh JR, Littman DR. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur J Immunol 2012; 42:2232 - 7; http://dx.doi.org/10.1002/eji.201242740; PMID: 22949321
  • Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 2008; 9:1297 - 306; http://dx.doi.org/10.1038/ni.1663; PMID: 18849990
  • Okamoto K, Iwai Y, Oh-Hora M, Yamamoto M, Morio T, Aoki K, Ohya K, Jetten AM, Akira S, Muta T, et al. IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature 2010; 464:1381 - 5; http://dx.doi.org/10.1038/nature08922; PMID: 20383124
  • Cascão R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, Fonseca JE, Moita LF. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev 2012; 11:856 - 62; http://dx.doi.org/10.1016/j.autrev.2012.02.022; PMID: 22415021
  • Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 2011; 472:486 - 90; http://dx.doi.org/10.1038/nature09978; PMID: 21441909
  • Kumar N, Lyda B, Chang MR, Lauer JL, Solt LA, Burris TP, Kamenecka TM, Griffin PR. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS Chem Biol 2012; 7:672 - 7; http://dx.doi.org/10.1021/cb200496y; PMID: 22292739
  • Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002; 2:364 - 71; http://dx.doi.org/10.1038/nri802; PMID: 12033742
  • Genovese MC, Greenwald MW, Alloway JA, Baldassare AR, Chase W, Newman C, et al. Efficacy and Safety of Baminercept in the Treatment of Rheumatoid Arthritis (RA) Results of the Phase 2B Study in the TNF-IR Population. Arthritis Rheum 2009; 60:417
  • Genovese MC, Greenwald MW, Cho CS, Berman A, Jin L, Cameron G, et al. A Phase 2 Study of Multiple Subcutaneous Doses of LY2439821, An Anti-IL-17 Monoclonal Antibody, in Patients with Rheumatoid Arthritis in Two Populations: Nave to Biologic Therapy or Inadequate Responders to Tumor Necrosis Factor Alpha Inhibitors. [abstract] Arthritis Rheum 2011; 63:Suppl 10 2591
  • Genovese MC, Bojin S, Biagini IM, Mociran E, Cristei D, Mirea G, Georgescu L, Sloan-Lancaster J. Tabalumab in rheumatoid arthritis patients with an inadequate response to methotrexate and naive to biologic therapy: a phase II, randomized, placebo-controlled trial. Arthritis Rheum 2013; 65:880 - 9; http://dx.doi.org/10.1002/art.37820; PMID: 23359344
  • Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IPG-CSF. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:554 - 9; http://dx.doi.org/10.1038/nrrheum.2009.178; PMID: 19798030
  • Fossati G, Mazzucchelli I, Gritti D, Ricevuti G, Edwards SW, Moulding DA, Rossi ML. In vitro effects of GM-CSF on mature peripheral blood neutrophils. Int J Mol Med 1998; 1:943 - 51; PMID: 9852629
  • Esnault S, Malter JS. GM-CSF regulation in eosinophils. Arch Immunol Ther Exp (Warsz) 2002; 50:121 - 30; PMID: 12022701
  • Hayat SQ, Hearth-Holmes M, Wolf RE. Flare of arthritis with successful treatment of Felty’s syndrome with granulocyte colony stimulating factor (GCSF). Clin Rheumatol 1995; 14:211 - 2; http://dx.doi.org/10.1007/BF02214946; PMID: 7540528
  • Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 2010; 62:383 - 91; PMID: 20112361
  • Bell AL, Magill MK, McKane WR, Kirk F, Irvine AE. Measurement of colony-stimulating factors in synovial fluid: potential clinical value. Rheumatol Int 1995; 14:177 - 82; http://dx.doi.org/10.1007/BF00262295; PMID: 7536953
  • Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 2001; 3:293 - 8; http://dx.doi.org/10.1186/ar318; PMID: 11549370
  • Plater-Zyberk C, Joosten LA, Helsen MM, Koenders MI, Baeuerle PA, van den Berg WB. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis 2009; 68:721 - 8; http://dx.doi.org/10.1136/ard.2007.085431; PMID: 18495731
  • Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 2011; 70:1542 - 9; http://dx.doi.org/10.1136/ard.2010.146225; PMID: 21613310
  • Burmester GR, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis 2012; http://dx.doi.org/10.1136/annrheumdis-2012-202450; PMID: 23234647
  • Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206:299 - 311; http://dx.doi.org/10.1084/jem.20081463; PMID: 19204111
  • Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42:963 - 70; http://dx.doi.org/10.1002/1529-0131(199905)42:5<963::AID-ANR15>3.0.CO;2-E; PMID: 10323452
  • Arroyo-Villa I, Bautista-Caro MB, Balsa A, Aguado-Acín P, Nuño L, Bonilla-Hernán MG, Puig-Kröger A, Martín-Mola E, Miranda-Carús ME. Frequency of Th17 CD4+ T cells in early rheumatoid arthritis: a marker of anti-CCP seropositivity. PLoS One 2012; 7:e42189; http://dx.doi.org/10.1371/journal.pone.0042189; PMID: 22870298
  • Lubberts E, van den Bersselaar L, Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK, Joosten LA, van den Berg WB. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol 2003; 170:2655 - 62; PMID: 12594294
  • van den Berg WB, Miossec P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:549 - 53; http://dx.doi.org/10.1038/nrrheum.2009.179; PMID: 19798029
  • Lee S-Y, Kwok SK, Son HJ, Ryu JG, Kim EK, Oh HJ, Cho ML, Ju JH, Park SH, Kim HY. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res Ther 2013; 15:R31; http://dx.doi.org/10.1186/ar4179; PMID: 23421940
  • Griffiths CEM, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R, Yeilding N, Guzzo C, Xia Y, Zhou B, Li S, et al, ACCEPT Study Group. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 2010; 362:118 - 28; http://dx.doi.org/10.1056/NEJMoa0810652; PMID: 20071701
  • Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis 2013; 5:141 - 52; http://dx.doi.org/10.1177/1759720X13485328; PMID: 23858337
  • Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, Aelion JA, Lee SH, Codding CE, Kellner H, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis 2013; 72:863 - 9; http://dx.doi.org/10.1136/annrheumdis-2012-201601; PMID: 22730366
  • van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, Dolhain RJ, Lubberts E. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 2011; 63:73 - 83; http://dx.doi.org/10.1002/art.30093; PMID: 20954258
  • Hwang S-Y, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 2004; 6:R120 - 8; http://dx.doi.org/10.1186/ar1038; PMID: 15059275
  • Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, Jawad A, Pathan E, Kinderlerer A, Taylor PC, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis 2012; 71:1741 - 8; http://dx.doi.org/10.1136/annrheumdis-2011-201024; PMID: 22550316
  • Thurlings RM, Wijbrandts CA, Mebius RE, Cantaert T, Dinant HJ, van der Pouw-Kraan TC, Verweij CL, Baeten D, Tak PP. Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum 2008; 58:1582 - 9; http://dx.doi.org/10.1002/art.23505; PMID: 18512774
  • Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH, Holers VM. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 2006; 116:961 - 73; http://dx.doi.org/10.1172/JCI25422; PMID: 16585962
  • Cambridge G, Leandro MJ, Edwards JC, Ehrenstein MR, Salden M, Bodman-Smith M, Webster AD. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum 2003; 48:2146 - 54; http://dx.doi.org/10.1002/art.11181; PMID: 12905467
  • Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum 2008; 58:2993 - 9; http://dx.doi.org/10.1002/art.23902; PMID: 18821683
  • Vital EM, Rawstron AC, Dass S, Henshaw K, Madden J, Emery P, McGonagle D. Reduced-dose rituximab in rheumatoid arthritis: efficacy depends on degree of B cell depletion. Arthritis Rheum 2011; 63:603 - 8; http://dx.doi.org/10.1002/art.30152; PMID: 21360489
  • Kavanaugh A, Rosengren S, Lee SJ, Hammaker D, Firestein GS, Kalunian K, Wei N, Boyle DL. Assessment of rituximab’s immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann Rheum Dis 2008; 67:402 - 8; http://dx.doi.org/10.1136/ard.2007.074229; PMID: 17644541
  • Stohl W, Gomez-Reino J, Olech E, Dudler J, Fleischmann RM, Zerbini CA, Ashrafzadeh A, Grzeschik S, Bieraugel R, Green J, et al. Safety and efficacy of ocrelizumab in combination with methotrexate in MTX-naive subjects with rheumatoid arthritis: the phase III FILM trial. Ann Rheum Dis 2012; 71:1289 - 96; http://dx.doi.org/10.1136/annrheumdis-2011-200706; PMID: 22307942
  • Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci U S A 2004; 101:3903 - 8; http://dx.doi.org/10.1073/pnas.0307348101; PMID: 14988498
  • Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, Brink R. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004; 20:785 - 98; http://dx.doi.org/10.1016/j.immuni.2004.05.010; PMID: 15189742
  • Fernandez L, Salinas GF, Rocha C, Carvalho-Pinto CE, Yeremenko N, Papon L, Medema JP, Combe B, Morel J, Baeten D, et al. The TNF family member APRIL dampens collagen-induced arthritis. Ann Rheum Dis 2013; 72:1367 - 74; http://dx.doi.org/10.1136/annrheumdis-2012-202382; PMID: 23178293
  • Moura RA, Cascão R, Perpétuo I, Canhão H, Vieira-Sousa E, Mourão AF, Rodrigues AM, Polido-Pereira J, Queiroz MV, Rosário HS, et al. Cytokine pattern in very early rheumatoid arthritis favours B-cell activation and survival. Rheumatology (Oxford) 2011; 50:278 - 82; http://dx.doi.org/10.1093/rheumatology/keq338; PMID: 21047805
  • Tan S-M, Xu D, Roschke V, Perry JW, Arkfeld DG, Ehresmann GR, Migone TS, Hilbert DM, Stohl W. Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum 2003; 48:982 - 92; http://dx.doi.org/10.1002/art.10860; PMID: 12687540
  • Chang Y, Wu Y, Wang D, Wei W, Qin Q, Xie G, Zhang L, Yan S, Chen J, Wang Q, et al. Therapeutic effects of TACI-Ig on rats with adjuvant-induced arthritis via attenuating inflammatory responses. Rheumatology (Oxford) 2011; 50:862 - 70; http://dx.doi.org/10.1093/rheumatology/keq404; PMID: 21186171
  • Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ, Weyand CM. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115:3083 - 92; http://dx.doi.org/10.1172/JCI25265; PMID: 16239971
  • van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum 2011; 63:1782 - 92; http://dx.doi.org/10.1002/art.30372; PMID: 21452294
  • Genovese MC, Kinnman N, de La Bourdonnaye G, Pena Rossi C, Tak PP. Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum 2011; 63:1793 - 803; http://dx.doi.org/10.1002/art.30373; PMID: 21452293
  • Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, León MG, et al, BLISS-52 Study Group. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377:721 - 31; http://dx.doi.org/10.1016/S0140-6736(10)61354-2; PMID: 21296403
  • Fillingim RB, Kaplan L, Staud R, Ness TJ, Glover TL, Campbell CM, Mogil JS, Wallace MR. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain 2005; 6:159 - 67; http://dx.doi.org/10.1016/j.jpain.2004.11.008; PMID: 15772909
  • Stohl W, Merrill JT, McKay JD, Lisse JR, Zhong ZJ, Freimuth WW, Genovese MC. Efficacy and safety of belimumab in patients with rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled, dose-ranging Study. J Rheumatol 2013; 40:579 - 89; http://dx.doi.org/10.3899/jrheum.120886; PMID: 23547209
  • Koch AE. Chemokines and their receptors in rheumatoid arthritis: future targets?. Arthritis Rheum 2005; 52:710 - 21; http://dx.doi.org/10.1002/art.20932; PMID: 15751074
  • Haringman JJ, Smeets TJM, Reinders-Blankert P, Tak PP. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis 2006; 65:294 - 300; http://dx.doi.org/10.1136/ard.2005.037176; PMID: 16107514
  • Nanki T, Urasaki Y, Imai T, Nishimura M, Muramoto K, Kubota T, Miyasaka N. Inhibition of fractalkine ameliorates murine collagen-induced arthritis. J Immunol 2004; 173:7010 - 6; PMID: 15557198
  • Amat M, Benjamim CF, Williams LM, Prats N, Terricabras E, Beleta J, Kunkel SL, Godessart N. Pharmacological blockade of CCR1 ameliorates murine arthritis and alters cytokine networks in vivo. Br J Pharmacol 2006; 149:666 - 75; http://dx.doi.org/10.1038/sj.bjp.0706912; PMID: 17016504
  • Brühl H, Cihak J, Schneider MA, Plachý J, Rupp T, Wenzel I, Shakarami M, Milz S, Ellwart JW, Stangassinger M, et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172:890 - 8; PMID: 14707060
  • Yang Y-F, Mukai T, Gao P, Yamaguchi N, Ono S, Iwaki H, Obika S, Imanishi T, Tsujimura T, Hamaoka T, et al. A non-peptide CCR5 antagonist inhibits collagen-induced arthritis by modulating T cell migration without affecting anti-collagen T cell responses. Eur J Immunol 2002; 32:2124 - 32; http://dx.doi.org/10.1002/1521-4141(200208)32:8<2124::AID-IMMU2124>3.0.CO;2-S; PMID: 12209624
  • Mohan K, Issekutz TB. Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 2007; 179:8463 - 9; PMID: 18056393
  • Barsante MM, Cunha TM, Allegretti M, Cattani F, Policani F, Bizzarri C, Tafuri WL, Poole S, Cunha FQ, Bertini R, et al. Blockade of the chemokine receptor CXCR2 ameliorates adjuvant-induced arthritis in rats. Br J Pharmacol 2008; 153:992 - 1002; http://dx.doi.org/10.1038/sj.bjp.0707462; PMID: 17891165
  • Shahrara S, Proudfoot AE, Woods JM, Ruth JH, Amin MA, Park CC, Haas CS, Pope RM, Haines GK, Zha YY, et al. Amelioration of rat adjuvant-induced arthritis by Met-RANTES. Arthritis Rheum 2005; 52:1907 - 19; http://dx.doi.org/10.1002/art.21033; PMID: 15934086
  • Bresnihan B, Gerlag DM, Rooney T, Smeets TJ, Wijbrandts CA, Boyle D, Fitzgerald O, Kirkham BW, McInnes IB, Smith M, et al. Synovial macrophages as a biomarker of response to therapeutic intervention in rheumatoid arthritis: standardization and consistency across centers. J Rheumatol 2007; 34:620 - 2; PMID: 17343309
  • Katschke KJ Jr., Rottman JB, Ruth JH, Qin S, Wu L, LaRosa G, Ponath P, Park CC, Pope RM, Koch AE. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum 2001; 44:1022 - 32; http://dx.doi.org/10.1002/1529-0131(200105)44:5<1022::AID-ANR181>3.0.CO;2-N; PMID: 11352233
  • Haringman JJ, Kraan MC, Smeets TJM, Zwinderman KH, Tak PP. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann Rheum Dis 2003; 62:715 - 21; http://dx.doi.org/10.1136/ard.62.8.715; PMID: 12860725
  • Schall TJ, Proudfoot AEI. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 2011; 11:355 - 63; http://dx.doi.org/10.1038/nri2972; PMID: 21494268
  • Tak PP, Balanescu A, Tseluyko V, Bojin S, Drescher E, Dairaghi D, Miao S, Marchesin V, Jaen J, Schall TJ, et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann Rheum Dis 2013; 72:337 - 44; http://dx.doi.org/10.1136/annrheumdis-2011-201605; PMID: 22589376
  • Phillips RJ, Lutz M, Premack B. Differential signaling mechanisms regulate expression of CC chemokine receptor-2 during monocyte maturation. J Inflamm (Lond) 2005; 2:14; http://dx.doi.org/10.1186/1476-9255-2-14; PMID: 16259633
  • Ogata H, Takeya M, Yoshimura T, Takagi K, Takahashi K. The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J Pathol 1997; 182:106 - 14; http://dx.doi.org/10.1002/(SICI)1096-9896(199705)182:1<106::AID-PATH816>3.0.CO;2-A; PMID: 9227349
  • Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 1997; 186:1757 - 62; http://dx.doi.org/10.1084/jem.186.10.1757; PMID: 9362535
  • Vergunst CE, Gerlag DM, Lopatinskaya L, Klareskog L, Smith MD, van den Bosch F, Dinant HJ, Lee Y, Wyant T, Jacobson EW, et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2008; 58:1931 - 9; http://dx.doi.org/10.1002/art.23591; PMID: 18576354
  • Tuttle DL, Harrison JK, Anders C, Sleasman JW, Goodenow MM. Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J Virol 1998; 72:4962 - 9; PMID: 9573265
  • Fleishaker D, Wang X, Menon S. Zeiher, Bernhardt G., Stock, T. A Phase 2 Study to Assess the Efficacy and Safety of Maraviroc, a CCR-5 Antagonist in the Treatment of Rheumatoid Arthritis. [abstract] Arthritis Rheum 2009; 60:Supp 10 397
  • Gerlag DM, Hollis S, Layton M, Vencovský J, Szekanecz Z, Braddock M, Tak PP, ESCAPE Study Group. Preclinical and clinical investigation of a CCR5 antagonist, AZD5672, in patients with rheumatoid arthritis receiving methotrexate. Arthritis Rheum 2010; 62:3154 - 60; http://dx.doi.org/10.1002/art.27652; PMID: 20662070
  • Bendele AM, Chlipala ES, Scherrer J, Frazier J, Sennello G, Rich WJ, Edwards CK 3rd. Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 2000; 43:2648 - 59; http://dx.doi.org/10.1002/1529-0131(200012)43:12<2648::AID-ANR4>3.0.CO;2-M; PMID: 11145022
  • van den Berg WB. Is there a rationale for combined TNF and IL-1 blocking in arthritis?. Clin Exp Rheumatol 2002; 20:Suppl 27 S21 - 5; PMID: 14989425
  • Weinblatt M, Combe B, Covucci A, Aranda R, Becker JC, Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: A one-year randomized, placebo-controlled study. Arthritis Rheum 2006; 54:2807 - 16; http://dx.doi.org/10.1002/art.22070; PMID: 16947384
  • Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, Bekker P, 20000223 Study Group. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 2004; 50:1412 - 9; http://dx.doi.org/10.1002/art.20221; PMID: 15146410
  • Greenwald MW, Shergy WJ, Kaine JL, Sweetser MT, Gilder K, Linnik MD. Evaluation of the safety of rituximab in combination with a tumor necrosis factor inhibitor and methotrexate in patients with active rheumatoid arthritis: results from a randomized controlled trial. Arthritis Rheum 2011; 63:622 - 32; http://dx.doi.org/10.1002/art.30194; PMID: 21360491
  • Weinblatt M, Schiff M, Goldman A, Kremer J, Luggen M, Li T, Chen D, Becker JC. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis 2007; 66:228 - 34; http://dx.doi.org/10.1136/ard.2006.055111; PMID: 16935912
  • Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, Guiducci S, Jones S, Jorgensen C, Le Blanc K, et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 2007; 9:301; http://dx.doi.org/10.1186/ar2103; PMID: 17284303
  • Uccelli A, Moretta L, Pistoia V, Uccelli A Pistola V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8:726 - 36; http://dx.doi.org/10.1038/nri2395; PMID: 19172693
  • Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12:383 - 96; http://dx.doi.org/10.1038/nri3209; PMID: 22531326
  • Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 2010; 28:1446 - 55; http://dx.doi.org/10.1002/stem.459; PMID: 20597105
  • Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15:42 - 9; http://dx.doi.org/10.1038/nm.1905; PMID: 19098906
  • François M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 2012; 20:187 - 95; http://dx.doi.org/10.1038/mt.2011.189; PMID: 21934657
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815 - 22; http://dx.doi.org/10.1182/blood-2004-04-1559; PMID: 15494428
  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106:1755 - 61; http://dx.doi.org/10.1182/blood-2005-04-1496; PMID: 15905186
  • Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 2007; 92:881 - 8; http://dx.doi.org/10.3324/haematol.11240; PMID: 17606437
  • Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 2007; 56:1175 - 86; http://dx.doi.org/10.1002/art.22511; PMID: 17393437
  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42 - 8; http://dx.doi.org/10.1016/S0301-472X(01)00769-X; PMID: 11823036
  • Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther 2010; 12:R31; http://dx.doi.org/10.1186/ar2939; PMID: 20175883
  • Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noël D. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 2005; 52:1595 - 603; http://dx.doi.org/10.1002/art.21012; PMID: 15880818
  • Sullivan C, Murphy JM, Griffin MD, Porter RM, Evans CH, O’Flatharta C, Shaw G, Barry F. Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis. Arthritis Res Ther 2012; 14:R167; http://dx.doi.org/10.1186/ar3916; PMID: 22812502
  • Liu Y, Mu R, Wang S, Long L, Liu X, Li R, Sun J, Guo J, Zhang X, Guo J, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 2010; 12:R210; http://dx.doi.org/10.1186/ar3187; PMID: 21080925
  • Zhou B, Yuan J, Zhou Y, Ghawji M Jr., Deng YP, Lee AJ, Lee AJ, Nair U, Kang AH, Brand DD, et al. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin Immunol 2011; 141:328 - 37; http://dx.doi.org/10.1016/j.clim.2011.08.014; PMID: 21944669
  • Santos JM, Bárcia RN, Simões SI, Gaspar MM, Calado S, Agua-Doce A, Almeida SC, Almeida J, Filipe M, Teixeira M, et al. The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX®) in the treatment of inflammatory arthritis. J Transl Med 2013; 11:18; http://dx.doi.org/10.1186/1479-5876-11-18; PMID: 23324136
  • Chen M, Su W, Lin X, Guo Z, Wang J, Zhang Q, Brand D, Ryffel B, Huang J, Liu Z, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis Rheum 2013; 65:1181 - 93; http://dx.doi.org/10.1002/art.37894; PMID: 23400582
  • El-Denshary ES, Rashed LA, Elhussiny M. Mesenchymal stromal cells versus betamethasone can dampen disease activity in the collagen arthritis mouse model. Clin Exp Med 2013; http://dx.doi.org/10.1007/s10238-013-0248-3; PMID: 23990050
  • Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH, Cho CS. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 2008; 153:269 - 76; http://dx.doi.org/10.1111/j.1365-2249.2008.03683.x; PMID: 18713142
  • Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, Chung BH, Lee JW, Kim HY, Cho SG. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 2011; 63:1668 - 80; http://dx.doi.org/10.1002/art.30326; PMID: 21384335
  • Liu LN, Wang G, Hendricks K, Lee K, Bohnlein E, Junker U, Mosca JD. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models. Stem Cells Transl Med 2013; 2:362 - 75; http://dx.doi.org/10.5966/sctm.2012-0135; PMID: 23592838
  • Sullivan C, Barry F, Ritter T, O’Flatharta C, Howard L, Shaw G, Anegon I, Murphy M. Allogeneic murine mesenchymal stem cells: migration to inflamed joints in vivo and amelioration of collagen induced arthritis when transduced to express CTLA4Ig. Stem Cells Dev 2013; 22:3203 - 13; http://dx.doi.org/10.1089/scd.2013.0248; PMID: 23895495
  • Wu CC, Wu TC, Liu FL, Sytwu HK, Chang DM. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell Immunol 2012; 273:30 - 40; http://dx.doi.org/10.1016/j.cellimm.2011.11.009; PMID: 22196378
  • Papadopoulou A, Yiangou M, Athanasiou E, Zogas N, Kaloyannidis P, Batsis I, Fassas A, Anagnostopoulos A, Yannaki E. Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis. Ann Rheum Dis 2012; 71:1733 - 40; http://dx.doi.org/10.1136/annrheumdis-2011-200985; PMID: 22586171
  • Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363:1439 - 41; http://dx.doi.org/10.1016/S0140-6736(04)16104-7; PMID: 15121408
  • Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006; 81:1390 - 7; http://dx.doi.org/10.1097/01.tp.0000214462.63943.14; PMID: 16732175
  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, et al, Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371:1579 - 86; http://dx.doi.org/10.1016/S0140-6736(08)60690-X; PMID: 18468541
  • Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15:804 - 11; http://dx.doi.org/10.1016/j.bbmt.2008.03.012; PMID: 19539211
  • Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K, Talebian F, Hooshmand F, Ghavamzadeh A, Nikbin B. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4:50 - 7; PMID: 17652844
  • Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7:29; http://dx.doi.org/10.1186/1479-5876-7-29; PMID: 19393041
  • Liang J, Zhang H, Hua B, Wang H, Wang J, Han Z, Sun L. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler 2009; 15:644 - 6; http://dx.doi.org/10.1177/1352458509104590; PMID: 19389752
  • Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, Herlopian A, Baz EK, Mahfouz R, Khalil-Hamdan R, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010; 227:185 - 9; http://dx.doi.org/10.1016/j.jneuroim.2010.07.013; PMID: 20728948
  • Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11:150 - 6; http://dx.doi.org/10.1016/S1474-4422(11)70305-2; PMID: 22236384
  • Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 2012; 7:407 - 14; http://dx.doi.org/10.2174/157488812804484648; PMID: 23061813
  • Allison M. Genzyme backs Osiris, despite Prochymal flop. Nat Biotechnol 2009; 27:966 - 7; http://dx.doi.org/10.1038/nbt1109-966; PMID: 19898434
  • Galipeau J. The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road?. Cytotherapy 2013; 15:2 - 8; http://dx.doi.org/10.1016/j.jcyt.2012.10.002; PMID: 23260081
  • Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, Li Y, Bai W, Li M, Ji H, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev 2013; 22:3192 - 202; http://dx.doi.org/10.1089/scd.2013.0023; PMID: 23941289
  • Hilkens CMU, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 2010; 29:156 - 83; http://dx.doi.org/10.3109/08830180903281193; PMID: 20199240
  • Hilkens CM, Isaacs JD. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now?. Clin Exp Immunol 2013; 172:148 - 57; http://dx.doi.org/10.1111/cei.12038; PMID: 23574312
  • Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, Wang XN, Isaacs JD, Hilkens CM. Differential regulation of naïve and memory CD4+ T cells by alternatively activated dendritic cells. J Leukoc Biol 2008; 84:124 - 33; http://dx.doi.org/10.1189/jlb.1107744; PMID: 18430785
  • Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis 2010; 69:2042 - 50; http://dx.doi.org/10.1136/ard.2009.126383; PMID: 20551157
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685 - 711; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040; PMID: 12615891
  • Stoop JN, Robinson JH, Hilkens CM. Developing tolerogenic dendritic cell therapy for rheumatoid arthritis: what can we learn from mouse models?. Ann Rheum Dis 2011; 70:1526 - 33; http://dx.doi.org/10.1136/ard.2011.151654; PMID: 21804099
  • Martin E, O’Sullivan B, Low P, Thomas R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 2003; 18:155 - 67; http://dx.doi.org/10.1016/S1074-7613(02)00503-4; PMID: 12530984
  • Martin E, Capini C, Duggan E, Lutzky VP, Stumbles P, Pettit AR, O’Sullivan B, Thomas R. Antigen-specific suppression of established arthritis in mice by dendritic cells deficient in NF-kappaB. Arthritis Rheum 2007; 56:2255 - 66; http://dx.doi.org/10.1002/art.22655; PMID: 17599748
  • Stoop JN, Harry RA, von Delwig A, Isaacs JD, Robinson JH, Hilkens CM. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum 2010; 62:3656 - 65; http://dx.doi.org/10.1002/art.27756; PMID: 20862679
  • Thomas R, et al. Safety and preliminary evidence of efficacy in a phase I clinical trial of autologous tolerising dendritic cells exposed to citrullinated peptides (Rheumavax) in patients with rheumatoid arthritis. Ann Rheum Dis 2011; 70:Suppl3 169
  • Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, Old LJ, Romero P, Hoos A, Davis MM. “MIATA”-minimal information about T cell assays. Immunity 2009; 31:527 - 8; http://dx.doi.org/10.1016/j.immuni.2009.09.007; PMID: 19833080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.