3,180
Views
33
CrossRef citations to date
0
Altmetric
Review

The yellow fever 17D virus as a platform for new live attenuated vaccines

, &
Pages 1256-1265 | Received 01 Dec 2013, Accepted 05 Feb 2014, Published online: 19 Feb 2014

References

  • Strode GK. Yellow fever. New York: McGraw-Hill Book Company, 1951.
  • Galler R, Post PR, Santos CN, Ferreira II. Genetic variability among yellow fever virus 17D substrains. Vaccine 1998; 16:1024 - 8; http://dx.doi.org/10.1016/S0264-410X(97)00278-8; PMID: 9682354
  • Marchevsky RS, Freire MS, Coutinho ES, Galler R. Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys. Virology 2003; 316:55 - 63; http://dx.doi.org/10.1016/S0042-6822(03)00583-X; PMID: 14599790
  • Camacho LA, de Aguiar SG, Freire MdaS, Leal MdaL, do Nascimento JP, Iguchi T, Lozana JA, Farias RH, Collaborative Group for the Study of Yellow Fever Vaccines. Reactogenicity of yellow fever vaccines in a randomized, placebo-controlled trial. Rev Saude Publica 2005; 39:413 - 20; http://dx.doi.org/10.1590/S0034-89102005000300012; PMID: 15997317
  • Monath TP, Barrett AD. Pathogenesis and pathophysiology of yellow fever. Adv Virus Res 2003; 60:343 - 95; http://dx.doi.org/10.1016/S0065-3527(03)60009-6; PMID: 14689698
  • Lefeuvre A, Marianneau P, Deubel V. Current Assessment of Yellow Fever and Yellow Fever Vaccine. Curr Infect Dis Rep 2004; 6:96 - 104; http://dx.doi.org/10.1007/s11908-996-0005-9; PMID: 15023271
  • Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K. Persistence of neutralizing antibody 30-35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ 1981; 59:895 - 900; PMID: 6978196
  • Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 2008; 28:710 - 22; http://dx.doi.org/10.1016/j.immuni.2008.02.020; PMID: 18468462
  • Franco D, Li W, Qing F, Stoyanov CT, Moran T, Rice CM, Ho DD. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development. Vaccine 2010; 28:5676 - 85; http://dx.doi.org/10.1016/j.vaccine.2010.06.052; PMID: 20600494
  • Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, Akira S, Ahmed R, Pulendran B. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 2006; 203:413 - 24; http://dx.doi.org/10.1084/jem.20051720; PMID: 16461338
  • Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev 2013; 255:243 - 55; http://dx.doi.org/10.1111/imr.12099; PMID: 23947360
  • Childs KS, Randall RE, Goodbourn S. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS One 2013; 8:e64202; http://dx.doi.org/10.1371/journal.pone.0064202; PMID: 23671710
  • Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 2008; 9:1157 - 64; http://dx.doi.org/10.1038/ni.1645; PMID: 18758466
  • Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR 3rd, Castro E, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 2008; 205:3119 - 31; http://dx.doi.org/10.1084/jem.20082292; PMID: 19047440
  • Neves PC, Rudersdorf RA, Galler R, Bonaldo MC, de Santana MG, Mudd PA, Martins MA, Rakasz EG, Wilson NA, Watkins DI. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γ at 5-7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses. Vaccine 2010; 28:8183 - 8; http://dx.doi.org/10.1016/j.vaccine.2010.09.090; PMID: 20939995
  • Silva ML, Martins MA, Espírito-Santo LR, Campi-Azevedo AC, Silveira-Lemos D, Ribeiro JG, Homma A, Kroon EG, Teixeira-Carvalho A, Elói-Santos SM, et al. Characterization of main cytokine sources from the innate and adaptive immune responses following primary 17DD yellow fever vaccination in adults. Vaccine 2011; 29:583 - 92; http://dx.doi.org/10.1016/j.vaccine.2010.08.046; PMID: 20732465
  • Neves PCC, Santos JR, Tubarão LN, Bonaldo MC, Galler R. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses. PLoS One 2013; 8:e81953; http://dx.doi.org/10.1371/journal.pone.0081953; PMID: 24324734
  • Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol 2009; 9:741 - 7; PMID: 19763148
  • Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005; 433:477 - 80; http://dx.doi.org/10.1038/nature03205; PMID: 15690031
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8:519 - 29; http://dx.doi.org/10.1038/nrm2199; PMID: 17565364
  • Reinhardt B, Jaspert R, Niedrig M, Kostner C, L’age-Stehr J. Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. J Med Virol 1998; 56:159 - 67; http://dx.doi.org/10.1002/(SICI)1096-9071(199810)56:2<159::AID-JMV10>3.0.CO;2-B; PMID: 9746073
  • Mudd PA, Piaskowski SM, Neves PC, Rudersdorf R, Kolar HL, Eernisse CM, Weisgrau KL, de Santana MG, Wilson NA, Bonaldo MC, et al. The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques--implications for recombinant vaccine design. Immunogenetics 2010; 62:593 - 600; http://dx.doi.org/10.1007/s00251-010-0461-0; PMID: 20607226
  • Co MD, Kilpatrick ED, Rothman AL. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization. Immunology 2009; 128:Suppl e718 - 27; http://dx.doi.org/10.1111/j.1365-2567.2009.03070.x; PMID: 19740333
  • van der Most RG, Harrington LE, Giuggio V, Mahar PL, Ahmed R. Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice. Virology 2002; 296:117 - 24; http://dx.doi.org/10.1006/viro.2002.1432; PMID: 12036323
  • Kohler S, Bethke N, Böthe M, Sommerick S, Frentsch M, Romagnani C, Niedrig M, Thiel A. The early cellular signatures of protective immunity induced by live viral vaccination. Eur J Immunol 2012; 42:2363 - 73; http://dx.doi.org/10.1002/eji.201142306; PMID: 22733156
  • Blom K, Braun M, Ivarsson MA, Gonzalez VD, Falconer K, Moll M, Ljunggren HG, Michaëlsson J, Sandberg JK. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J Immunol 2013; 190:2150 - 8; http://dx.doi.org/10.4049/jimmunol.1202234; PMID: 23338234
  • Camacho LA, Freire MdaS, Leal MdaL, Aguiar SG, Nascimento JP, Iguchi T, Lozana JdeA, Farias RH, Collaborative Group for the Study of Yellow Fever Vaccines. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial. Rev Saude Publica 2004; 38:671 - 8; http://dx.doi.org/10.1590/S0034-89102004000500009; PMID: 15499438
  • Julander JG, Trent DW, Monath TP. Immune correlates of protection against yellow fever determined by passive immunization and challenge in the hamster model. Vaccine 2011; 29:6008 - 16; http://dx.doi.org/10.1016/j.vaccine.2011.06.034; PMID: 21718741
  • Brandriss MW, Schlesinger JJ, Walsh EE. Immunogenicity of a purified fragment of 17D yellow fever envelope protein. J Infect Dis 1990; 161:1134 - 9; http://dx.doi.org/10.1093/infdis/161.6.1134; PMID: 1693159
  • Lobigs M, Dalgarno L, Schlesinger JJ, Weir RC. Location of a neutralization determinant in the E protein of yellow fever virus (17D vaccine strain). Virology 1987; 161:474 - 8; http://dx.doi.org/10.1016/0042-6822(87)90141-3; PMID: 2446422
  • Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, Quyyumi F, Garg S, Altman JD, Del Rio C, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol 2009; 183:7919 - 30; http://dx.doi.org/10.4049/jimmunol.0803903; PMID: 19933869
  • Rice CM, Grakoui A, Galler R, Chambers TJ. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1989; 1:285 - 96; PMID: 2487295
  • Bray M, Lai CJ. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc Natl Acad Sci U S A 1991; 88:10342 - 6; http://dx.doi.org/10.1073/pnas.88.22.10342; PMID: 1682924
  • Chambers TJ, Nestorowicz A, Mason PW, Rice CM. Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 1999; 73:3095 - 101; PMID: 10074160
  • Arroyo J, Miller C, Catalan J, Myers GA, Ratterree MS, Trent DW, Monath TP. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J Virol 2004; 78:12497 - 507; http://dx.doi.org/10.1128/JVI.78.22.12497-12507.2004; PMID: 15507637
  • Guirakhoo F, Arroyo J, Pugachev KV, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Soike K, et al. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 2001; 75:7290 - 304; http://dx.doi.org/10.1128/JVI.75.16.7290-7304.2001; PMID: 11462001
  • Caufour PS, Motta MC, Yamamura AM, Vazquez S, Ferreira II, Jabor AV, Bonaldo MC, Freire MS, Galler R. Construction, characterization and immunogenicity of recombinant yellow fever 17D-dengue type 2 viruses. Virus Res 2001; 79:1 - 14; http://dx.doi.org/10.1016/S0168-1702(01)00273-8; PMID: 11551641
  • Pugachev KV, Guirakhoo F, Ocran SW, Mitchell F, Parsons M, Penal C, Girakhoo S, Pougatcheva SO, Arroyo J, Trent DW, et al. High fidelity of yellow fever virus RNA polymerase. J Virol 2004; 78:1032 - 8; http://dx.doi.org/10.1128/JVI.78.2.1032-1038.2004; PMID: 14694136
  • Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2010; 28:632 - 49; http://dx.doi.org/10.1016/j.vaccine.2009.09.098; PMID: 19808029
  • Capeding RZ, Luna IA, Bomasang E, Lupisan S, Lang J, Forrat R, Wartel A, Crevat D. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines. Vaccine 2011; 29:3863 - 72; http://dx.doi.org/10.1016/j.vaccine.2011.03.057; PMID: 21477675
  • Dayan GH, Garbes P, Noriega F, Izoton de Sadovsky AD, Rodrigues PM, Giuberti C, Dietze R. Immunogenicity and safety of a recombinant tetravalent dengue vaccine in children and adolescents ages 9-16 years in Brazil. Am J Trop Med Hyg 2013; 89:1058 - 65; http://dx.doi.org/10.4269/ajtmh.13-0304; PMID: 24189367
  • Dayan GH, Thakur M, Boaz M, Johnson C. Safety and immunogenicity of three tetravalent dengue vaccine formulations in healthy adults in the USA. Vaccine 2013; 31:5047 - 54; http://dx.doi.org/10.1016/j.vaccine.2013.08.088; PMID: 24021313
  • Guirakhoo F, Kitchener S, Morrison D, Forrat R, McCarthy K, Nichols R, Yoksan S, Duan X, Ermak TH, Kanesa-Thasan N, et al. Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: Phase I clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum Vaccin 2006; 2:60 - 7; http://dx.doi.org/10.4161/hv.2.2.2555; PMID: 17012873
  • Qiao M, Shaw D, Forrat R, Wartel-Tram A, Lang J. Priming effect of dengue and yellow fever vaccination on the immunogenicity, infectivity, and safety of a tetravalent dengue vaccine in humans. Am J Trop Med Hyg 2011; 85:724 - 31; http://dx.doi.org/10.4269/ajtmh.2011.10-0436; PMID: 21976579
  • Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, Dulyachai W, Pengsaa K, Wartel TA, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 2012; 380:1559 - 67; http://dx.doi.org/10.1016/S0140-6736(12)61428-7; PMID: 22975340
  • Villar LA, Rivera-Medina DM, Arredondo-García JL, Boaz M, Starr-Spires L, Thakur M, Zambrano B, Miranda MC, Rivas E, Dayan GH. Safety and immunogenicity of a recombinant tetravalent dengue vaccine in 9-16 year olds: a randomized, controlled, phase II trial in Latin America. Pediatr Infect Dis J 2013; 32:1102 - 9; http://dx.doi.org/10.1097/INF.0b013e31829b8022; PMID: 24067553
  • Mantel N, Girerd Y, Geny C, Bernard I, Pontvianne J, Lang J, Barban V. Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses. Vaccine 2011; 29:6629 - 35; http://dx.doi.org/10.1016/j.vaccine.2011.06.101; PMID: 21745519
  • Monath TP, McCarthy K, Bedford P, Johnson CT, Nichols R, Yoksan S, Marchesani R, Knauber M, Wells KH, Arroyo J, et al. Clinical proof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. Vaccine 2002; 20:1004 - 18; http://dx.doi.org/10.1016/S0264-410X(01)00457-1; PMID: 11803060
  • Chokephaibulkit K, Sirivichayakul C, Thisyakorn U, Sabchareon A, Pancharoen C, Bouckenooghe A, Gailhardou S, Boaz M, Feroldi E. Safety and immunogenicity of a single administration of live-attenuated Japanese encephalitis vaccine in previously primed 2- to 5-year-olds and naive 12- to 24-month-olds: multicenter randomized controlled trial. Pediatr Infect Dis J 2010; 29:1111 - 7; http://dx.doi.org/10.1097/INF.0b013e3181f68e9c; PMID: 20856164
  • Monath TP, Guirakhoo F, Nichols R, Yoksan S, Schrader R, Murphy C, Blum P, Woodward S, McCarthy K, Mathis D, et al. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J Infect Dis 2003; 188:1213 - 30; http://dx.doi.org/10.1086/378356; PMID: 14551893
  • Nasveld PE, Ebringer A, Elmes N, Bennett S, Yoksan S, Aaskov J, McCarthy K, Kanesa-thasan N, Meric C, Reid M. Long term immunity to live attenuated Japanese encephalitis chimeric virus vaccine: randomized, double-blind, 5-year phase II study in healthy adults. Hum Vaccin 2010; 6:1038 - 46; http://dx.doi.org/10.4161/hv.6.12.13057; PMID: 21150279
  • Biedenbender R, Bevilacqua J, Gregg AM, Watson M, Dayan G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J Infect Dis 2011; 203:75 - 84; http://dx.doi.org/10.1093/infdis/jiq003; PMID: 21148499
  • De Filette M, Ulbert S, Diamond M, Sanders NN. Recent progress in West Nile virus diagnosis and vaccination. Vet Res 2012; 43:16; http://dx.doi.org/10.1186/1297-9716-43-16; PMID: 22380523
  • McAllister A, Arbetman AE, Mandl S, Peña-Rossi C, Andino R. Recombinant yellow fever viruses are effective therapeutic vaccines for treatment of murine experimental solid tumors and pulmonary metastases. J Virol 2000; 74:9197 - 205; http://dx.doi.org/10.1128/JVI.74.19.9197-9205.2000; PMID: 10982366
  • Barba-Spaeth G, Longman RS, Albert ML, Rice CM. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 2005; 202:1179 - 84; http://dx.doi.org/10.1084/jem.20051352; PMID: 16260489
  • Nogueira RT, Nogueira AR, Pereira MC, Rodrigues MM, Neves PC, Galler R, Bonaldo MC. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi. PLoS One 2013; 8:e59347; http://dx.doi.org/10.1371/journal.pone.0059347; PMID: 23527169
  • Tao D, Barba-Spaeth G, Rai U, Nussenzweig V, Rice CM, Nussenzweig RS. Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model. J Exp Med 2005; 201:201 - 9; http://dx.doi.org/10.1084/jem.20041526; PMID: 15657290
  • Nogueira RT, Nogueira AR, Pereira MC, Rodrigues MM, Galler R, Bonaldo MC. Biological and immunological characterization of recombinant Yellow Fever 17D viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome. Virol J 2011; 8:127; http://dx.doi.org/10.1186/1743-422X-8-127; PMID: 21418577
  • de Melo AB, Nascimento EJ, Braga-Neto U, Dhalia R, Silva AM, Oelke M, Schneck JP, Sidney J, Sette A, Montenegro SM, et al. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs. PLoS Negl Trop Dis 2013; 7:e1938; http://dx.doi.org/10.1371/journal.pntd.0001938; PMID: 23383350
  • Bonaldo MC, Garratt RC, Caufour PS, Freire MS, Rodrigues MM, Nussenzweig RS, Galler R. Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus. J Mol Biol 2002; 315:873 - 85; http://dx.doi.org/10.1006/jmbi.2001.5258; PMID: 11812154
  • Bonaldo MC, Garratt RC, Freire MS, Galler R. Expression of foreign protein epitopes at the surface of recombinant yellow fever 17D viruses based on three-dimensional modeling of its envelope protein. Cell Biochem Biophys 2006; 44:313 - 24; http://dx.doi.org/10.1385/CBB:44:3:313; PMID: 16679518
  • Bonaldo MC, Garratt RC, Marchevsky RS, Coutinho ES, Jabor AV, Almeida LF, Yamamura AM, Duarte AS, Oliveira PJ, Lizeu JO, et al. Attenuation of recombinant yellow fever 17D viruses expressing foreign protein epitopes at the surface. J Virol 2005; 79:8602 - 13; http://dx.doi.org/10.1128/JVI.79.13.8602-8613.2005; PMID: 15956601
  • Rumyantsev AA, Zhang ZX, Gao QS, Moretti N, Brown N, Kleanthous H, Delagrave S, Guirakhoo F, Collett MS, Pugachev KV. Direct random insertion of an influenza virus immunologic determinant into the NS1 glycoprotein of a vaccine flavivirus. Virology 2010; 396:329 - 38; http://dx.doi.org/10.1016/j.virol.2009.10.033; PMID: 19913267
  • Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 2012; 21:13 - 25; http://dx.doi.org/10.1002/pro.757; PMID: 22031009
  • Bonaldo MC, Mello SM, Trindade GF, Rangel AA, Duarte AS, Oliveira PJ, Freire MS, Kubelka CF, Galler R. Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes. Virol J 2007; 4:115; http://dx.doi.org/10.1186/1743-422X-4-115; PMID: 17971212
  • Trindade GF, Santana MG, Santos JR, Galler R, Bonaldo MC. Retention of a recombinant GFP protein expressed by the yellow fever 17D virus in the E/NS1 intergenic region in the endoplasmic reticulum. Mem Inst Oswaldo Cruz 2012; 107:262 - 72; http://dx.doi.org/10.1590/S0074-02762012000200017; PMID: 22415267
  • Bredenbeek PJ, Molenkamp R, Spaan WJ, Deubel V, Marianneau P, Salvato MS, Moshkoff D, Zapata J, Tikhonov I, Patterson J, et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology 2006; 345:299 - 304; http://dx.doi.org/10.1016/j.virol.2005.12.001; PMID: 16412488
  • Jiang X, Dalebout TJ, Bredenbeek PJ, Carrion R Jr., Brasky K, Patterson J, Goicochea M, Bryant J, Salvato MS, Lukashevich IS. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine 2011; 29:1248 - 57; http://dx.doi.org/10.1016/j.vaccine.2010.11.079; PMID: 21145373
  • Weill L, James L, Ulryck N, Chamond N, Herbreteau CH, Ohlmann T, Sargueil B. A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA. Nucleic Acids Res 2010; 38:1367 - 81; http://dx.doi.org/10.1093/nar/gkp1109; PMID: 19969542
  • Santana MGV, Neves PCC, Santos JR, Lima NS. SANTOS AAC, SANTOS JR, Watkins DI, Galler R, Bonaldo MC. Improved genetic stability of recombinant yellow fever 17D virus expressing a lentiviral Gag gene fragment. Virology In press
  • Bonaldo MC, Martins MA, Rudersdorf R, Mudd PA, Sacha JB, Piaskowski SM, Costa Neves PC, Veloso de Santana MG, Vojnov L, Capuano S 3rd, et al. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques. J Virol 2010; 84:3699 - 706; http://dx.doi.org/10.1128/JVI.02255-09; PMID: 20089645
  • Martins MA, Bonaldo MC, Rudersdorf RA, Piaskowski SM, Rakasz EG, Weisgrau KL, Furlott JR, Eernisse CM, Veloso de Santana MG, Hidalgo B, et al. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques. PLoS One 2013; 8:e54434; http://dx.doi.org/10.1371/journal.pone.0054434; PMID: 23336000
  • Mudd PA, Martins MA, Ericsen AJ, Tully DC, Power KA, Bean AT, Piaskowski SM, Duan L, Seese A, Gladden AD, et al. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature 2012; 491:129 - 33; http://dx.doi.org/10.1038/nature11443; PMID: 23023123
  • Deas TS, Binduga-Gajewska I, Tilgner M, Ren P, Stein DA, Moulton HM, Iversen PL, Kauffman EB, Kramer LD, Shi PY. Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol 2005; 79:4599 - 609; http://dx.doi.org/10.1128/JVI.79.8.4599-4609.2005; PMID: 15795246
  • Zou G, Xu HY, Qing M, Wang QY, Shi PY. Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Res 2011; 91:11 - 9; http://dx.doi.org/10.1016/j.antiviral.2011.05.001; PMID: 21575658
  • Corver J, Lenches E, Smith K, Robison RA, Sando T, Strauss EG, Strauss JH. Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 2003; 77:2265 - 70; http://dx.doi.org/10.1128/JVI.77.3.2265-2270.2003; PMID: 12525663
  • Stoyanov CT, Boscardin SB, Deroubaix S, Barba-Spaeth G, Franco D, Nussenzweig RS, Nussenzweig M, Rice CM. Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii. Vaccine 2010; 28:4644 - 52; http://dx.doi.org/10.1016/j.vaccine.2010.04.071; PMID: 20451637
  • Mutebi JP, Rijnbrand RC, Wang H, Ryman KD, Wang E, Fulop LD, Titball R, Barrett AD. Genetic relationships and evolution of genotypes of yellow fever virus and other members of the yellow fever virus group within the Flavivirus genus based on the 3′ noncoding region. J Virol 2004; 78:9652 - 65; http://dx.doi.org/10.1128/JVI.78.18.9652-9665.2004; PMID: 15331698
  • Andino R, McAllister A. Recombinant Bicistronic Flaviviruses and Methods of Use Thereof USA: University of California, 2001:28.
  • Kaptein SJ, De Burghgraeve T, Froeyen M, Pastorino B, Alen MM, Mondotte JA, Herdewijn P, Jacobs M, de Lamballerie X, Schols D, et al. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob Agents Chemother 2010; 54:5269 - 80; http://dx.doi.org/10.1128/AAC.00686-10; PMID: 20837762
  • Pierson TC, Diamond MS, Ahmed AA, Valentine LE, Davis CW, Samuel MA, Hanna SL, Puffer BA, Doms RW. An infectious West Nile virus that expresses a GFP reporter gene. Virology 2005; 334:28 - 40; http://dx.doi.org/10.1016/j.virol.2005.01.021; PMID: 15749120
  • Yun SI, Kim SY, Rice CM, Lee YM. Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 2003; 77:6450 - 65; http://dx.doi.org/10.1128/JVI.77.11.6450-6465.2003; PMID: 12743302
  • Grant D, Tan GK, Qing M, Ng JK, Yip A, Zou G, Xie X, Yuan Z, Schreiber MJ, Schul W, et al. A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. J Virol 2011; 85:7775 - 87; http://dx.doi.org/10.1128/JVI.00665-11; PMID: 21632767
  • Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY, Ploss A, Rice CM. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A 2012; 109:14610 - 5; http://dx.doi.org/10.1073/pnas.1212379109; PMID: 22908290
  • Bonaldo MC, Galler R. Method for the Production of Recombinant Virus, DNA Constructs, Recombinant Virus and Vaccine Compositions BRAZIL: Fundação Oswaldo Cruz, 2005:93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.