2,506
Views
54
CrossRef citations to date
0
Altmetric
Review

Tailored immunity by skin antigen-presenting cells

, &
Pages 27-36 | Received 04 Aug 2014, Accepted 04 Aug 2014, Published online: 01 Nov 2014

References

  • RappuoliR, MillerHI, FalkowS. The Intangible Value of Vaccination. Science2009; 9:937 - 9; http://dx.doi.org/10.1126/science.1075173; PMID: 12169712
  • CallardRE, HarperJI. The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells?. Trends Immunol2007; 28:294 - 8; http://dx.doi.org/10.1016/j.it.2007.05.003; PMID: 17544846
  • ProkschE, BrandnerJM, JensenJM. The skin: an indispensable barrier. Exp Dermatol2008; 17:1063 - 72; http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x; PMID: 19043850
  • MulhollandWJ, ArbuthnottEA, BellhouseBJ, CornhillJF, AustynJM, KendallMA, CuiZ, TirlapurUK. Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J Invest Dermatol2006; 126:1541 - 8; http://dx.doi.org/10.1038/sj.jid.5700290; PMID: 16645596
  • RomaniN, ClausenBE, StoitznerP. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev2010; 234:120 - 41; http://dx.doi.org/10.1111/j.0105-2896.2009.00886.x; PMID: 20193016
  • ValladeauJ, RavelO, Dezutter-DambuyantC, MooreK, KleijmeerM, LiuY, Duvert-FrancesV, VincentC, SchmittD, DavoustJ, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity2000; 12:71 - 81; http://dx.doi.org/10.1016/S1074-7613(00)80160-0; PMID: 10661407
  • ValladeauJ, Clair-MoninotV, Dezutter-DambuyantC, PinJJ, KissenpfennigA, MattéiMG, Ait-YahiaS, BatesEE, MalissenB, KochF, et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol2002; 168:782 - 92; http://dx.doi.org/10.4049/jimmunol.168.2.782; PMID: 11777972
  • TangA, AmagaiM, GrangerLG, StanleyJR, UdeyMC. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature1993; 361:82 - 5; http://dx.doi.org/10.1038/361082a0; PMID: 8421498
  • HungerRE, SielingPA, OchoaMT, SugayaM, BurdickAE, ReaTH, BrennanPJ, BelisleJT, BlauveltA, PorcelliSA, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest2004; 113:701 - 8; http://dx.doi.org/10.1172/JCI200419655; PMID: 14991068
  • MeradM, GinhouxF, CollinM. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol2008; 8:935 - 47; http://dx.doi.org/10.1038/nri2455; PMID: 19029989
  • MeradM, ManzMG, KarsunkyH, WagersA, PetersW, CharoI, WeissmanIL, CysterJG, EnglemanEG. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol2002; 3:1135 - 41; http://dx.doi.org/10.1038/ni852; PMID: 12415265
  • GinhouxF, TackeF, AngeliV, BogunovicM, LoubeauM, DaiXM, StanleyER, RandolphGJ, MeradM. Langerhans cells arise from monocytes in vivo. Nat Immunol2006; 7:265 - 73; http://dx.doi.org/10.1038/ni1307; PMID: 16444257
  • SeréK, BaekJ-H, Ober-BlöbaumJ, Müller-NewenG, TackeF, YokotaY, ZenkeM, HieronymusT. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity2012; 37:905 - 16; http://dx.doi.org/10.1016/j.immuni.2012.07.019; PMID: 23159228
  • NagaoK, KobayashiT, MoroK, OhyamaM, AdachiT, KitashimaDY, UehaS, HoriuchiK, TanizakiH, KabashimaK, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol2012; 13:744 - 52; http://dx.doi.org/10.1038/ni.2353; PMID: 22729248
  • KissenpfennigA, HenriS, DuboisB, Laplace-BuilhéC, PerrinP, RomaniN, TrippCH, DouillardP, LesermanL, KaiserlianD, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity2005; 22:643 - 54; http://dx.doi.org/10.1016/j.immuni.2005.04.004; PMID: 15894281
  • SeguraE, Valladeau-GuilemondJ, DonnadieuM-H, Sastre-GarauX, SoumelisV, AmigorenaS. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med2012; 209:653 - 60; http://dx.doi.org/10.1084/jem.20111457; PMID: 22430490
  • SeguraE, KappE, GuptaN, WongJ, LimJ, JiH, HeathWR, SimpsonR, VilladangosJA. Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Mol Immunol2010; 47:1765 - 73; http://dx.doi.org/10.1016/j.molimm.2010.02.028; PMID: 20347150
  • HeuzéML, VargasP, ChabaudM, Le BerreM, LiuY-J, CollinO, SolanesP, VoituriezR, PielM, Lennon-DuménilAM. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev2013; 256:240 - 54; PMID: 24117825
  • OhlL, MohauptM, CzelothN, HintzenG, KiafardZ, ZwirnerJ, BlankensteinT, HenningG, FörsterR. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity2004; 21:279 - 88; http://dx.doi.org/10.1016/j.immuni.2004.06.014; PMID: 15308107
  • KelJM, Girard-MadouxMJH, ReizisB, ClausenBE. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol2010; 185:3248 - 55; http://dx.doi.org/10.4049/jimmunol.1000981; PMID: 20713882
  • ShklovskayaE, O’SullivanBJ, NgLG, RoedigerB, ThomasR, WeningerW, Fazekas de St GrothB. Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A2011; 108:18049 - 54; http://dx.doi.org/10.1073/pnas.1110076108; PMID: 22006331
  • IgyartoBZ, JenisonMC, DuddaJC, RoersA, MüllerW, KoniPA, CampbellDJ, ShlomchikMJ, KaplanDH. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. J Immunol2009; 183:5085 - 93; http://dx.doi.org/10.4049/jimmunol.0901884; PMID: 19801524
  • BobrA, Olvera-GomezI, IgyartoBZ, HaleyKM, HogquistKA, KaplanDH. Acute ablation of Langerhans cells enhances skin immune responses. J Immunol2010; 185:4724 - 8; http://dx.doi.org/10.4049/jimmunol.1001802; PMID: 20855870
  • Kautz-NeuK, NoordegraafM, DingesS, BennettCL, JohnD, ClausenBE, von StebutE. Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med2011; 208:885 - 91; http://dx.doi.org/10.1084/jem.20102318; PMID: 21536741
  • Gomez de AgüeroM, VocansonM, Hacini-RachinelF, TaillardetM, SparwasserT, KissenpfennigA, MalissenB, KaiserlianD, DuboisB. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest2012; 122:1700 - 11; http://dx.doi.org/10.1172/JCI59725; PMID: 22523067
  • IdoyagaJ, FioreseC, ZbytnuikL, LubkinA, MillerJ, MalissenB, MucidaD, MeradM, SteinmanRM. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest2013; 123:844 - 54; PMID: 23298832
  • SeneschalJ, ClarkRA, GehadA, Baecher-AllanCM, KupperTS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity2012; 36:873 - 84; http://dx.doi.org/10.1016/j.immuni.2012.03.018; PMID: 22560445
  • IgyártóBZ, HaleyK, OrtnerD, BobrA, Gerami-NejadM, EdelsonBT, ZurawskiSM, MalissenB, ZurawskiG, BermanJ, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity2011; 35:260 - 72; http://dx.doi.org/10.1016/j.immuni.2011.06.005; PMID: 21782478
  • Nakajima S, Igyártó BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol 2012; 129:1048–1055.e6.
  • StoitznerP, TrippCH, EberhartA, PriceKM, JungJY, BurschL, RoncheseF, RomaniN. Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A2006; 103:7783 - 8; http://dx.doi.org/10.1073/pnas.0509307103; PMID: 16672373
  • WaithmanJ, AllanRS, KosakaH, AzukizawaH, ShortmanK, LutzMB, HeathWR, CarboneFR, BelzGT. Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J Immunol2007; 179:4535 - 41; http://dx.doi.org/10.4049/jimmunol.179.7.4535; PMID: 17878350
  • BedouiS, WhitneyPG, WaithmanJ, EidsmoL, WakimL, CaminschiI, AllanRS, WojtasiakM, ShortmanK, CarboneFR, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol2009; 10:488 - 95; http://dx.doi.org/10.1038/ni.1724; PMID: 19349986
  • HenriS, PoulinLF, TamoutounourS, ArdouinL, GuilliamsM, de BovisB, DevilardE, ViretC, AzukizawaH, KissenpfennigA, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med2010; 207:189 - 206; http://dx.doi.org/10.1084/jem.20091964; PMID: 20038600
  • BennettCL, Fallah-AraniF, ConlanT, TrouilletC, GooldH, ChorroL, FlutterB, MeansTK, GeissmannF, ChakravertyR. Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood2011; 117:7063 - 9; http://dx.doi.org/10.1182/blood-2011-01-329185; PMID: 21566096
  • LiardC, MunierS, Joulin-GietA, BonduelleO, HadamS, DuffyD, VogtA, VerrierB, CombadièreB. Intradermal immunization triggers epidermal Langerhans cell mobilization required for CD8 T-cell immune responses. J Invest Dermatol2012; 132:615 - 25; http://dx.doi.org/10.1038/jid.2011.346; PMID: 22170490
  • ElnekaveM, FurmanovK, ShaulY, CapuchaT, Eli-BerchoerL, ZelentsovaK, ClausenBE, HovavAH. Second-generation Langerhans cells originating from epidermal precursors are essential for CD8+ T cell priming. J Immunol2014; 192:1395 - 403; http://dx.doi.org/10.4049/jimmunol.1301143; PMID: 24420922
  • Seneschal J, Jiang X, Kupper TS. Langerin+ Dermal DC, but Not Langerhans Cells, Are Required for Effective CD8-Mediated Immune Responses after Skin Scarification with Vaccinia Virus. J Invest Dermatol [Internet] 2013 [cited 2014 May 13]; Available from: http://www.nature.com/jid/journal/vaop/ncurrent/full/jid2013418a.html
  • OuchiT, KuboA, YokouchiM, AdachiT, KobayashiT, KitashimaDY, FujiiH, ClausenBE, KoyasuS, AmagaiM, et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med2011; 208:2607 - 13; http://dx.doi.org/10.1084/jem.20111718; PMID: 22143886
  • FurioL, BriotetI, JourneauxA, BillardH, Péguet-NavarroJ. Human langerhans cells are more efficient than CD14(-)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J Invest Dermatol2010; 130:1345 - 54; http://dx.doi.org/10.1038/jid.2009.424; PMID: 20107482
  • KlechevskyE, MoritaR, LiuM, CaoY, CoqueryS, Thompson-SnipesL, BriereF, ChaussabelD, ZurawskiG, PaluckaAK, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity2008; 29:497 - 510; http://dx.doi.org/10.1016/j.immuni.2008.07.013; PMID: 18789730
  • MathersAR, JanelsinsBM, RubinJP, TkachevaOA, ShufeskyWJ, WatkinsSC, MorelliAE, LarreginaAT. Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J Immunol2009; 182:921 - 33; http://dx.doi.org/10.4049/jimmunol.182.2.921; PMID: 19124735
  • FujitaH, NogralesKE, KikuchiT, GonzalezJ, CarucciJA, KruegerJG. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci U S A2009; 106:21795 - 800; http://dx.doi.org/10.1073/pnas.0911472106; PMID: 19996179
  • BanchereauJ, Thompson-SnipesL, ZurawskiS, BlanckJ-P, CaoY, ClaytonS, GorvelJP, ZurawskiG, KlechevskyE. The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood2012; 119:5742 - 9; http://dx.doi.org/10.1182/blood-2011-08-371245; PMID: 22535664
  • LebreMC, van der AarAM, van BaarsenL, van CapelTM, SchuitemakerJH, KapsenbergML, de JongEC. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol2007; 127:331 - 41; http://dx.doi.org/10.1038/sj.jid.5700530; PMID: 17068485
  • Di MeglioP, PereraGK, NestleFO. The multitasking organ: recent insights into skin immune function. Immunity2011; 35:857 - 69; http://dx.doi.org/10.1016/j.immuni.2011.12.003; PMID: 22195743
  • HeathWR, CarboneFR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol2013; 14:978 - 85; http://dx.doi.org/10.1038/ni.2680; PMID: 24048119
  • SugitaK, KabashimaK, AtarashiK, ShimauchiT, KobayashiM, TokuraY. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol2007; 147:176 - 83; http://dx.doi.org/10.1111/j.1365-2249.2006.03258.x; PMID: 17177977
  • NickoloffBJ, TurkaLA. Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes. Immunol Today1994; 15:464 - 9; http://dx.doi.org/10.1016/0167-5699(94)90190-2; PMID: 7945770
  • NestleFO, Di MeglioP, QinJ-Z, NickoloffBJ. Skin immune sentinels in health and disease. Nat Rev Immunol2009; 9:679 - 91; PMID: 19763149
  • PoulinLF, HenriS, de BovisB, DevilardE, KissenpfennigA, MalissenB. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med2007; 204:3119 - 31; http://dx.doi.org/10.1084/jem.20071724; PMID: 18086861
  • GinhouxF, CollinMP, BogunovicM, AbelM, LeboeufM, HelftJ, OchandoJ, KissenpfennigA, MalissenB, GrisottoM, et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med2007; 204:3133 - 46; http://dx.doi.org/10.1084/jem.20071733; PMID: 18086862
  • NagaoK, GinhouxF, LeitnerWW, MotegiS, BennettCL, ClausenBE, MeradM, UdeyMC. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A2009; 106:3312 - 7; http://dx.doi.org/10.1073/pnas.0807126106; PMID: 19218433
  • KingIL, KroenkeMA, SegalBM. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med2010; 207:953 - 61; http://dx.doi.org/10.1084/jem.20091844; PMID: 20421390
  • MalissenB, TamoutounourS, HenriS. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol2014; 14:417 - 28; http://dx.doi.org/10.1038/nri3683; PMID: 24854591
  • MalissenB, TamoutounourS, HenriS. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol2014; 14:417 - 28; http://dx.doi.org/10.1038/nri3683; PMID: 24854591
  • MollahSA, DobrinJS, FederRE, TseS-W, MatosIG, CheongC, SteinmanRM, AnandasabapathyN. Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J Invest Dermatol2014; 134:1265 - 75; http://dx.doi.org/10.1038/jid.2013.515; PMID: 24288007
  • Denda-NagaiK, AidaS, SabaK, SuzukiK, MoriyamaS, Oo-PuthinanS, TsuijiM, MorikawaA, KumamotoY, SugiuraD, et al. Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic cells. J Biol Chem2010; 285:19193 - 204; http://dx.doi.org/10.1074/jbc.M110.113613; PMID: 20304916
  • HashimotoD, MillerJ, MeradM. Dendritic cell and macrophage heterogeneity in vivo. Immunity2011; 35:323 - 35; http://dx.doi.org/10.1016/j.immuni.2011.09.007; PMID: 21943488
  • TamoutounourS, GuilliamsM, Montanana SanchisF, LiuH, TerhorstD, MalosseC, PolletE, ArdouinL, LucheH, SanchezC, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity2013; 39:925 - 38; http://dx.doi.org/10.1016/j.immuni.2013.10.004; PMID: 24184057
  • GeissmannF, ManzMG, JungS, SiewekeMH, MeradM, LeyK. Development of monocytes, macrophages, and dendritic cells. Science2010; 327:656 - 61; http://dx.doi.org/10.1126/science.1178331; PMID: 20133564
  • MosserDM, EdwardsJP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol2008; 8:958 - 69; http://dx.doi.org/10.1038/nri2448; PMID: 19029990
  • Boltjes A, van Wijk F. Human Dendritic Cell Functional Specialization in Steady-State and Inflammation. Front Immunol 2014; 5.
  • MillerJC, BrownBD, ShayT, GautierEL, JojicV, CohainA, PandeyG, LeboeufM, ElpekKG, HelftJ, et al, Immunological Genome Consortium. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol2012; 13:888 - 99; http://dx.doi.org/10.1038/ni.2370; PMID: 22797772
  • PandeyG, CohainA, MillerJ, MeradM. Decoding dendritic cell function through module and network analysis. J Immunol Methods2013; 387:71 - 80; http://dx.doi.org/10.1016/j.jim.2012.09.012; PMID: 23098840
  • SatpathyAT, WuX, AlbringJC, MurphyKM. Re(de)fining the dendritic cell lineage. Nat Immunol2012; 13:1145 - 54; http://dx.doi.org/10.1038/ni.2467; PMID: 23160217
  • MildnerA, JungS. Development and function of dendritic cell subsets. Immunity2014; 40:642 - 56; http://dx.doi.org/10.1016/j.immuni.2014.04.016; PMID: 24837101
  • GregorioJ, MellerS, ConradC, Di NardoA, HomeyB, LauermaA, AraiN, GalloRL, DigiovanniJ, GillietM. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med2010; 207:2921 - 30; http://dx.doi.org/10.1084/jem.20101102; PMID: 21115688
  • RandolphGJ, OchandoJ, Partida-SánchezS. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol2008; 26:293 - 316; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090254; PMID: 18045026
  • SeguraE, AmigorenaS. Inflammatory dendritic cells in mice and humans. Trends Immunol2013; 34:440 - 5; http://dx.doi.org/10.1016/j.it.2013.06.001; PMID: 23831267
  • SatpathyAT, KcW, AlbringJC, EdelsonBT, KretzerNM, BhattacharyaD, MurphyTL, MurphyKM. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med2012; 209:1135 - 52; http://dx.doi.org/10.1084/jem.20120030; PMID: 22615127
  • ZigmondE, VarolC, FaracheJ, ElmaliahE, SatpathyAT, FriedlanderG, MackM, ShpigelN, BonecaIG, MurphyKM, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity2012; 37:1076 - 90; http://dx.doi.org/10.1016/j.immuni.2012.08.026; PMID: 23219392
  • BogunovicM, GinhouxF, WagersA, LoubeauM, IsolaLM, LubranoL, NajfeldV, PhelpsRG, GrosskreutzC, SciglianoE, et al. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J Exp Med2006; 203:2627 - 38; http://dx.doi.org/10.1084/jem.20060667; PMID: 17116734
  • NathanC. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol2006; 6:173 - 82; http://dx.doi.org/10.1038/nri1785; PMID: 16498448
  • CrozatK, TamoutounourS, Vu ManhT-P, FossumE, LucheH, ArdouinL, GuilliamsM, AzukizawaH, BogenB, MalissenB, et al. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J Immunol2011; 187:4411 - 5; http://dx.doi.org/10.4049/jimmunol.1101717; PMID: 21948982
  • Bachem A, Hartung E, Güttler S, Mora A, Zhou X, Hegemann A, et al. Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation. Front Immunol [Internet] 2012 [cited 2014 Jun 3]; 3. Available from: http://www.frontiersin.org/Journal/10.3389/fimmu.2012.00214/full
  • ZhangJ-G, CzabotarPE, PolicheniAN, CaminschiI, WanSS, KitsoulisS, TullettKM, RobinAY, BrammananthR, van DelftMF, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity2012; 36:646 - 57; http://dx.doi.org/10.1016/j.immuni.2012.03.009; PMID: 22483802
  • BrewigN, KissenpfennigA, MalissenB, VeitA, BickertT, FleischerB, MostböckS, RitterU. Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J Immunol2009; 182:774 - 83; http://dx.doi.org/10.4049/jimmunol.182.2.774; PMID: 19124720
  • JiaoZ, BedouiS, BradyJL, WalterA, ChopinM, CarringtonEM, SutherlandRM, NuttSL, ZhangY, KoHJ, et al. The closely related CD103+ dendritic cells (DCs) and lymphoid-resident CD8+ DCs differ in their inflammatory functions. PLoS One2014; 9:e91126; http://dx.doi.org/10.1371/journal.pone.0091126; PMID: 24637385
  • HaniffaM, ShinA, BigleyV, McGovernN, TeoP, SeeP, WasanPS, WangXN, MalinarichF, MalleretB, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity2012; 37:60 - 73; http://dx.doi.org/10.1016/j.immuni.2012.04.012; PMID: 22795876
  • ChuC-C, AliN, KaragiannisP, Di MeglioP, SkoweraA, NapolitanoL, BarinagaG, GrysK, Sharif-PaghalehE, KaragiannisSN, et al. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med2012; 209:935 - 45; http://dx.doi.org/10.1084/jem.20112583; PMID: 22547651
  • GuilliamsM, CrozatK, HenriS, TamoutounourS, GrenotP, DevilardE, de BovisB, AlexopoulouL, DalodM, MalissenB. Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood2010; 115:1958 - 68; http://dx.doi.org/10.1182/blood-2009-09-245274; PMID: 20068222
  • CoombesJL, SiddiquiKRR, Arancibia-CárcamoCV, HallJ, SunC-M, BelkaidY, PowrieF. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med2007; 204:1757 - 64; http://dx.doi.org/10.1084/jem.20070590; PMID: 17620361
  • KitajimaM, ZieglerSF. Cutting edge: identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J Immunol2013; 191:4903 - 7; http://dx.doi.org/10.4049/jimmunol.1302175; PMID: 24123684
  • Kumamoto et al. - 2013 - CD301b+ Dermal Dendritic Cells Drive T Helper 2 Ce.pdf.
  • BanchereauJ, Thompson-SnipesL, ZurawskiS, BlanckJ-P, CaoY, ClaytonS, GorvelJP, ZurawskiG, KlechevskyE. The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood2012; 119:5742 - 9; http://dx.doi.org/10.1182/blood-2011-08-371245; PMID: 22535664
  • SeguraE, Valladeau-GuilemondJ, DonnadieuM-H, Sastre-GarauX, SoumelisV, AmigorenaS. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med2012; 209:653 - 60; http://dx.doi.org/10.1084/jem.20111457; PMID: 22430490
  • SoudjaSM, RuizAL, MarieJC, LauvauG. Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity2012; 37:549 - 62; http://dx.doi.org/10.1016/j.immuni.2012.05.029; PMID: 22940097
  • DomínguezPM, ArdavínC. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev2010; 234:90 - 104; http://dx.doi.org/10.1111/j.0105-2896.2009.00876.x; PMID: 20193014
  • López-BravoM, ArdavínC. In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity2008; 29:343 - 51; http://dx.doi.org/10.1016/j.immuni.2008.08.008; PMID: 18799142
  • ZabaLC, Fuentes-DuculanJ, EungdamrongNJ, AbelloMV, NovitskayaI, PiersonKC, GonzalezJ, KruegerJG, LowesMA. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol2009; 129:79 - 88; http://dx.doi.org/10.1038/jid.2008.194; PMID: 18633443
  • SeguraE, TouzotM, BohineustA, CappuccioA, ChiocchiaG, HosmalinA, DalodM, SoumelisV, AmigorenaS. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity2013; 38:336 - 48; http://dx.doi.org/10.1016/j.immuni.2012.10.018; PMID: 23352235
  • CombadiereB, LiardC. Transcutaneous and intradermal vaccination. Hum Vaccin2011; 7:811 - 27; http://dx.doi.org/10.4161/hv.7.8.16274; PMID: 21817854
  • SteinmanRM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol2012; 30:1 - 22; http://dx.doi.org/10.1146/annurev-immunol-100311-102839; PMID: 22136168
  • LiardC, MunierS, AriasM, Joulin-GietA, BonduelleO, DuffyD, ShattockRJ, VerrierB, CombadièreB. Targeting of HIV-p24 particle-based vaccine into differential skin layers induces distinct arms of the immune responses. Vaccine2011; 29:6379 - 91; http://dx.doi.org/10.1016/j.vaccine.2011.04.080; PMID: 21554912
  • BelsheRB, NewmanFK, CannonJ, DuaneC, TreanorJ, Van HoeckeC, HoweBJ, DubinG. Serum antibody responses after intradermal vaccination against influenza. N Engl J Med2004; 351:2286 - 94; http://dx.doi.org/10.1056/NEJMoa043555; PMID: 15525713
  • BosJD, MeinardiMM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol2000; 9:165 - 9; http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x; PMID: 10839713
  • MaheB, VogtA, LiardC, DuffyD, AbadieV, BonduelleO, BoissonnasA, SterryW, VerrierB, Blume-PeytaviU, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol2009; 129:1156 - 64; http://dx.doi.org/10.1038/jid.2008.356; PMID: 19052565
  • RancanF, AmselgruberS, HadamS, MunierS, PavotV, VerrierB, HackbarthS, CombadiereB, Blume-PeytaviU, VogtA. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells. J Control Release2014; 176:115 - 22; http://dx.doi.org/10.1016/j.jconrel.2013.12.022; PMID: 24384300
  • VogtA, MahéB, CostagliolaD, BonduelleO, HadamS, SchaeferG, SchaeferH, KatlamaC, SterryW, AutranB, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol2008; 180:1482 - 9; http://dx.doi.org/10.4049/jimmunol.180.3.1482; PMID: 18209043
  • CombadièreB, VogtA, MahéB, CostagliolaD, HadamS, BonduelleO, SterryW, StaszewskiS, SchaeferH, van der WerfS, et al. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One2010; 5:e10818; http://dx.doi.org/10.1371/journal.pone.0010818; PMID: 20520820
  • SullivanSP, KoutsonanosDG, Del Pilar MartinM, LeeJW, ZarnitsynV, ChoiS-O, MurthyN, CompansRW, SkountzouI, PrausnitzMR. Dissolving polymer microneedle patches for influenza vaccination. Nat Med2010; 16:915 - 20; http://dx.doi.org/10.1038/nm.2182; PMID: 20639891
  • GlennGM, Scharton-KerstenT, VassellR, MallettCP, HaleTL, AlvingCR. Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J Immunol1998; 161:3211 - 4; PMID: 9759833
  • GlennGM, TaylorDN, LiX, FrankelS, MontemaranoA, AlvingCR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med2000; 6:1403 - 6; http://dx.doi.org/10.1038/82225; PMID: 11100128
  • Behrens RH, Cramer JP, Jelinek T, Shaw H, von Sonnenburg F, Wilbraham D, et al. Efficacy and safety of a patch vaccine containing heat-labile toxin from< i> Escherichia coli</i> against travellers’ diarrhoea: a phase 3, randomised, double-blind, placebo-controlled field trial in travellers from Europe to Mexico and Guatemala. Lancet Infect Dis [Internet] 2013 [cited 2014 Jun 11]; Available from: http://www.sciencedirect.com/science/article/pii/S1473309913702974
  • JoshiVB, GearySM, SalemAK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J2013; 15:85 - 94; http://dx.doi.org/10.1208/s12248-012-9418-6; PMID: 23054976
  • GhotbiZ, HaddadiA, HamdyS, HungRW, SamuelJ, LavasanifarA. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target2011; 19:281 - 92; http://dx.doi.org/10.3109/1061186X.2010.499463; PMID: 20590403
  • CruzLJ, TackenPJ, FokkinkR, FigdorCG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials2011; 32:6791 - 803; http://dx.doi.org/10.1016/j.biomaterials.2011.04.082; PMID: 21724247
  • HamdyS, MolaviO, MaZ, HaddadiA, AlshamsanA, GobtiZ, ElhasiS, SamuelJ, LavasanifarA. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine2008; 26:5046 - 57; http://dx.doi.org/10.1016/j.vaccine.2008.07.035; PMID: 18680779
  • FischerS, SchlosserE, MuellerM, CsabaN, MerkleHP, GroettrupM, GanderB. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target2009; 17:652 - 61; http://dx.doi.org/10.1080/10611860903119656; PMID: 19622019
  • PavotV, RochereauN, PrimardC, GeninC, PerouzelE, LiouxT, PaulS, VerrierB. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release2013; 167:60 - 7; http://dx.doi.org/10.1016/j.jconrel.2013.01.015; PMID: 23352911
  • CaminschiI, ShortmanK. Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol2012; 33:71 - 7; http://dx.doi.org/10.1016/j.it.2011.10.007; PMID: 22153931
  • SanchoD, Mourão-SáD, JoffreOP, SchulzO, RogersNC, PenningtonDJ, CarlyleJR, Reis e SousaC. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest2008; 118:2098 - 110; http://dx.doi.org/10.1172/JCI34584; PMID: 18497879
  • CaminschiI, ProiettoAI, AhmetF, KitsoulisS, Shin TehJ, LoJCY, RizzitelliA, WuL, VremecD, van DommelenSL, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood2008; 112:3264 - 73; http://dx.doi.org/10.1182/blood-2008-05-155176; PMID: 18669894
  • BonifazL, BonnyayD, MahnkeK, RiveraM, NussenzweigMC, SteinmanRM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med2002; 196:1627 - 38; http://dx.doi.org/10.1084/jem.20021598; PMID: 12486105
  • MukherjeeG, GeliebterA, BabadJ, SantamariaP, SerrezeDV, FreemanGJ, TarbellKV, SharpeA, DiLorenzoTP. DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8⁺ T cells independently of PD-1 and PD-L1. Int Immunol2013; 25:651 - 60; http://dx.doi.org/10.1093/intimm/dxt031; PMID: 24021877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.