1,288
Views
11
CrossRef citations to date
0
Altmetric
Review

Actinous enigma or enigmatic actin

Folding, structure, and functions of the most abundant eukaryotic protein

, , &
Article: e34500 | Received 09 Dec 2013, Accepted 13 Aug 2014, Published online: 15 Aug 2014

References

  • PollardTD, BlanchoinL, MullinsRD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct2000; 29:545 - 76; http://dx.doi.org/10.1146/annurev.biophys.29.1.545; PMID: 10940259
  • LehrerSS, KerwarG. Intrinsic fluorescence of actin. Biochemistry1972; 11:1211 - 7; http://dx.doi.org/10.1021/bi00757a015; PMID: 4622352
  • Strzelecka-GolaszewskaH, NagyB, GergelyJ. Changes in conformation and nucleotide binding of Ca, Mn, or MgG-actin upon removal of the bound divalent cation. Studies of ultraviolet difference spectra and optical rotation. Arch Biochem Biophys1974; 161:559 - 69; http://dx.doi.org/10.1016/0003-9861(74)90339-7; PMID: 4209137
  • Strzelecka-GołaszewskaH, Venyaminov SYu, ZmorzynskiS, MossakowskaM. Effects of various amino acid replacements on the conformational stability of G-actin. Eur J Biochem1985; 147:331 - 42; http://dx.doi.org/10.1111/j.1432-1033.1985.tb08754.x; PMID: 3918865
  • Straub FB, ed. Actin. New-York, 1942.
  • BaruaB, WinkelmannDA, WhiteHD, Hitchcock-DeGregoriSE. Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Proc Natl Acad Sci U S A2012; 109:18425 - 30; http://dx.doi.org/10.1073/pnas.1212754109; PMID: 23091026
  • CarlierMF, Valentin-RancC, CombeauC, FievezS, PantoloniD. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. Adv Exp Med Biol1994; 358:71 - 81; http://dx.doi.org/10.1007/978-1-4615-2578-3_7; PMID: 7801813
  • PaavilainenVO, BertlingE, FalckS, LappalainenP. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol2004; 14:386 - 94; http://dx.doi.org/10.1016/j.tcb.2004.05.002; PMID: 15246432
  • PollardTD, BorisyGG. Cellular motility driven by assembly and disassembly of actin filaments. Cell2003; 112:453 - 65; http://dx.doi.org/10.1016/S0092-8674(03)00120-X; PMID: 12600310
  • dos RemediosCG, ChhabraD, KekicM, DedovaIV, TsubakiharaM, BerryDA, NosworthyNJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev2003; 83:433 - 73; PMID: 12663865
  • Maciver CK. The Encyclopaedia of Actin-Binding Proteins (and Drugs). 2004.
  • LaneNJ. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Biol1969; 40:286 - 91; http://dx.doi.org/10.1083/jcb.40.1.286; PMID: 5812427
  • SchleicherM, JockuschBM. Actin: its cumbersome pilgrimage through cellular compartments. Histochem Cell Biol2008; 129:695 - 704; http://dx.doi.org/10.1007/s00418-008-0430-y; PMID: 18438682
  • GrummtI. Actin and myosin as transcription factors. Curr Opin Genet Dev2006; 16:191 - 6; http://dx.doi.org/10.1016/j.gde.2006.02.001; PMID: 16495046
  • MirallesF, VisaN. Actin in transcription and transcription regulation. Curr Opin Cell Biol2006; 18:261 - 6; http://dx.doi.org/10.1016/j.ceb.2006.04.009; PMID: 16687246
  • VartiainenMK, GuettlerS, LarijaniB, TreismanR. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science2007; 316:1749 - 52; http://dx.doi.org/10.1126/science.1141084; PMID: 17588931
  • ZhengB, HanM, BernierM, WenJK. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J2009; 276:2669 - 85; http://dx.doi.org/10.1111/j.1742-4658.2009.06986.x; PMID: 19459931
  • RadfordSE. Protein folding: progress made and promises ahead. Trends Biochem Sci2000; 25:611 - 8; http://dx.doi.org/10.1016/S0968-0004(00)01707-2; PMID: 11116188
  • Finkelstein AV, Ptitsyn OB. Protein Physics: A Course of Lectures. Moscow: Academic Press, 2002.
  • Finkelstein AV, Ptitsyn OB. Protein Physics: A Course of Lectures. Moscow: University Book House, 2005.
  • AnfinsenCB. Principles that govern the folding of protein chains. Science1973; 181:223 - 30; http://dx.doi.org/10.1126/science.181.4096.223; PMID: 4124164
  • AnfinsenCB, HaberE, SelaM, WhiteFHJr.. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A1961; 47:1309 - 14; http://dx.doi.org/10.1073/pnas.47.9.1309; PMID: 13683522
  • BaldwinRL, RoseGD. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci1999; 24:77 - 83; http://dx.doi.org/10.1016/S0968-0004(98)01345-0; PMID: 10098403
  • BaldwinRL, RoseGD. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci1999; 24:26 - 33; http://dx.doi.org/10.1016/S0968-0004(98)01346-2; PMID: 10087919
  • PlotkinSS, OnuchicJN. Understanding protein folding with energy landscape theory. Part II: Quantitative aspects. Q Rev Biophys2002; 35:205 - 86; PMID: 12599750
  • PlotkinSS, OnuchicJN. Understanding protein folding with energy landscape theory. Part I: Basic concepts. Q Rev Biophys2002; 35:111 - 67; PMID: 12197302
  • LevinthalC. Are there pathways for protein folding?. J Chim Phys1968; 65:44 - 5
  • TuroverovKK, KuznetsovaIM, UverskyVN. The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol2010; 102:73 - 84; http://dx.doi.org/10.1016/j.pbiomolbio.2010.01.003; PMID: 20097220
  • CrickSL, JayaramanM, FriedenC, WetzelR, PappuRV. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci U S A2006; 103:16764 - 9; http://dx.doi.org/10.1073/pnas.0608175103; PMID: 17075061
  • TranHT, MaoA, PappuRV. Role of backbone-solvent interactions in determining conformational equilibria of intrinsically disordered proteins. J Am Chem Soc2008; 130:7380 - 92; http://dx.doi.org/10.1021/ja710446s; PMID: 18481860
  • ShortleD. The expanded denatured state: an ensemble of conformations trapped in a locally encoded topological space. Adv Protein Chem2002; 62:1 - 23; http://dx.doi.org/10.1016/S0065-3233(02)62003-0; PMID: 12418099
  • ShortleD, AckermanMS. Persistence of native-like topology in a denatured protein in 8 M urea. Science2001; 293:487 - 9; http://dx.doi.org/10.1126/science.1060438; PMID: 11463915
  • MittagT, OrlickyS, ChoyWY, TangX, LinH, SicheriF, KayLE, TyersM, Forman-KayJD. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci U S A2008; 105:17772 - 7; http://dx.doi.org/10.1073/pnas.0809222105; PMID: 19008353
  • MittagT, KayLE, Forman-KayJD. Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit2010; 23:105 - 16; PMID: 19585546
  • WrightPE, DysonHJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol1999; 293:321 - 31; http://dx.doi.org/10.1006/jmbi.1999.3110; PMID: 10550212
  • UverskyVN, GillespieJR, FinkAL. Why are “natively unfolded” proteins unstructured under physiologic conditions?. Proteins2000; 41:415 - 27; http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7; PMID: 11025552
  • UverskyVN. What does it mean to be natively unfolded?. Eur J Biochem2002; 269:2 - 12; http://dx.doi.org/10.1046/j.0014-2956.2001.02649.x; PMID: 11784292
  • UverskyVN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci2002; 11:739 - 56; http://dx.doi.org/10.1110/ps.4210102; PMID: 11910019
  • UverskyVN. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go?. Cell Mol Life Sci2003; 60:1852 - 71; http://dx.doi.org/10.1007/s00018-003-3096-6; PMID: 14523548
  • UverskyVN, OldfieldCJ, DunkerAK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit2005; 18:343 - 84; http://dx.doi.org/10.1002/jmr.747; PMID: 16094605
  • UverskyVN, DunkerAK. Biochemistry. Controlled chaos. Science2008; 322:1340 - 1; http://dx.doi.org/10.1126/science.1167453; PMID: 19039128
  • TuroverovKK, KuznetsovaIM, UverskyVN. The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol2010; 102:73 - 84; http://dx.doi.org/10.1016/j.pbiomolbio.2010.01.003; PMID: 20097220
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co., 2005:271-353.
  • DunkerAK, LawsonJD, BrownCJ, WilliamsRM, RomeroP, OhJS, OldfieldCJ, CampenAM, RatliffCM, HippsKW, et al. Intrinsically disordered protein. J Mol Graph Model2001; 19:26 - 59; http://dx.doi.org/10.1016/S1093-3263(00)00138-8; PMID: 11381529
  • DunkerAK, ObradovicZ. The protein trinity--linking function and disorder. Nat Biotechnol2001; 19:805 - 6; http://dx.doi.org/10.1038/nbt0901-805; PMID: 11533628
  • DunkerAK, BrownCJ, LawsonJD, IakouchevaLM, ObradovićZ. Intrinsic disorder and protein function. Biochemistry2002; 41:6573 - 82; http://dx.doi.org/10.1021/bi012159+; PMID: 12022860
  • DunkerAK, BrownCJ, ObradovicZ. Identification and functions of usefully disordered proteins. Adv Protein Chem2002; 62:25 - 49; http://dx.doi.org/10.1016/S0065-3233(02)62004-2; PMID: 12418100
  • DunkerAK, CorteseMS, RomeroP, IakouchevaLM, UverskyVN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J2005; 272:5129 - 48; http://dx.doi.org/10.1111/j.1742-4658.2005.04948.x; PMID: 16218947
  • DunkerAK, OldfieldCJ, MengJ, RomeroP, YangJY, ChenJW, VacicV, ObradovicZ, UverskyVN. The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics2008; 9:Suppl 2S1; http://dx.doi.org/10.1186/1471-2164-9-S2-S1; PMID: 18831774
  • DunkerAK, SilmanI, UverskyVN, SussmanJL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol2008; 18:756 - 64; http://dx.doi.org/10.1016/j.sbi.2008.10.002; PMID: 18952168
  • DunkerAK, UverskyVN. Signal transduction via unstructured protein conduits. Nat Chem Biol2008; 4:229 - 30; http://dx.doi.org/10.1038/nchembio0408-229; PMID: 18347590
  • RadivojacP, IakouchevaLM, OldfieldCJ, ObradovicZ, UverskyVN, DunkerAK. Intrinsic disorder and functional proteomics. Biophys J2007; 92:1439 - 56; http://dx.doi.org/10.1529/biophysj.106.094045; PMID: 17158572
  • VuceticS, XieH, IakouchevaLM, OldfieldCJ, DunkerAK, ObradovicZ, UverskyVN. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res2007; 6:1899 - 916; http://dx.doi.org/10.1021/pr060393m; PMID: 17391015
  • XieH, VuceticS, IakouchevaLM, OldfieldCJ, DunkerAK, UverskyVN, ObradovicZ. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res2007; 6:1882 - 98; http://dx.doi.org/10.1021/pr060392u; PMID: 17391014
  • XieH, VuceticS, IakouchevaLM, OldfieldCJ, DunkerAK, ObradovicZ, UverskyVN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res2007; 6:1917 - 32; http://dx.doi.org/10.1021/pr060394e; PMID: 17391016
  • CorteseMS, UverskyVN, DunkerAK. Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol2008; 98:85 - 106; http://dx.doi.org/10.1016/j.pbiomolbio.2008.05.007; PMID: 18619997
  • RussellRB, GibsonTJ. A careful disorderliness in the proteome: sites for interaction and targets for future therapies. FEBS Lett2008; 582:1271 - 5; http://dx.doi.org/10.1016/j.febslet.2008.02.027; PMID: 18284921
  • OldfieldCJ, MengJ, YangJY, YangMQ, UverskyVN, DunkerAK. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics2008; 9:Suppl 1S1; http://dx.doi.org/10.1186/1471-2164-9-S1-S1; PMID: 18366598
  • TompaP, CsermelyP. The role of structural disorder in the function of RNA and protein chaperones. FASEB J2004; 18:1169 - 75; http://dx.doi.org/10.1096/fj.04-1584rev; PMID: 15284216
  • DysonHJ, WrightPE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol2002; 12:54 - 60; http://dx.doi.org/10.1016/S0959-440X(02)00289-0; PMID: 11839490
  • DysonHJ, WrightPE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol2005; 6:197 - 208; http://dx.doi.org/10.1038/nrm1589; PMID: 15738986
  • OldfieldCJ, ChengY, CorteseMS, RomeroP, UverskyVN, DunkerAK. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry2005; 44:12454 - 70; http://dx.doi.org/10.1021/bi050736e; PMID: 16156658
  • OldfieldCJ, ChengY, CorteseMS, BrownCJ, UverskyVN, DunkerAK. Comparing and combining predictors of mostly disordered proteins. Biochemistry2005; 44:1989 - 2000; http://dx.doi.org/10.1021/bi047993o; PMID: 15697224
  • TompaP, FuxreiterM, OldfieldCJ, SimonI, DunkerAK, UverskyVN. Close encounters of the third kind: disordered domains and the interactions of proteins. Bioessays2009; 31:328 - 35; http://dx.doi.org/10.1002/bies.200800151; PMID: 19260013
  • WrightPE, DysonHJ. Linking folding and binding. Curr Opin Struct Biol2009; 19:31 - 8; http://dx.doi.org/10.1016/j.sbi.2008.12.003; PMID: 19157855
  • TompaP. Intrinsically unstructured proteins. Trends Biochem Sci2002; 27:527 - 33; http://dx.doi.org/10.1016/S0968-0004(02)02169-2; PMID: 12368089
  • TompaP. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett2005; 579:3346 - 54; http://dx.doi.org/10.1016/j.febslet.2005.03.072; PMID: 15943980
  • DosztányiZ, TompaP. Prediction of protein disorder. Methods Mol Biol2008; 426:103 - 15; http://dx.doi.org/10.1007/978-1-60327-058-8_6; PMID: 18542859
  • FinkAL. Natively unfolded proteins. Curr Opin Struct Biol2005; 15:35 - 41; http://dx.doi.org/10.1016/j.sbi.2005.01.002; PMID: 15718131
  • UverskyVN. Gel-permeation chromatography as a unique instrument for quantitative and qualitative analysis of protein denaturation and unfolding. Int J Bio-Chromatogr1994; 1:103 - 14
  • UverskyVN, PtitsynOB. Further evidence on the equilibrium “pre-molten globule state”: four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol1996; 255:215 - 28; http://dx.doi.org/10.1006/jmbi.1996.0018; PMID: 8568868
  • UverskyVN. Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta2013; 1834:932 - 51; http://dx.doi.org/10.1016/j.bbapap.2012.12.008; PMID: 23269364
  • UverskyVN. Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des2013; 19:4191 - 213; http://dx.doi.org/10.2174/1381612811319230005; PMID: 23170892
  • RomeroPR, ZaidiS, FangYY, UverskyVN, RadivojacP, OldfieldCJ, CorteseMS, SickmeierM, LeGallT, ObradovicZ, et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A2006; 103:8390 - 5; http://dx.doi.org/10.1073/pnas.0507916103; PMID: 16717195
  • FischerE. Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges1894; 27:2985 - 93; http://dx.doi.org/10.1002/cber.18940270364
  • Oosawa W. Actin. In: Timasheff SN, Fasman GD, eds. Subunits in biological systems. New York: M. Dekker, 1971:261-322.
  • HermanIM. Actin isoforms. Curr Opin Cell Biol1993; 5:48 - 55; http://dx.doi.org/10.1016/S0955-0674(05)80007-9; PMID: 8448030
  • KabschW, MannherzHG, SuckD, PaiEF, HolmesKC. Atomic structure of the actin:DNase I complex. Nature1990; 347:37 - 44; http://dx.doi.org/10.1038/347037a0; PMID: 2395459
  • ZahmJA, PadrickSB, ChenZ, PakCW, YunusAA, HenryL, TomchickDR, ChenZ, RosenMK. The bacterial effector VopL organizes actin into filament-like structures. Cell2013; 155:423 - 34; http://dx.doi.org/10.1016/j.cell.2013.09.019; PMID: 24120140
  • IrobiE, AgudaAH, LarssonM, GuerinC, YinHL, BurtnickLD, BlanchoinL, RobinsonRC. Structural basis of actin sequestration by thymosin-beta4: implications for WH2 proteins. EMBO J2004; 23:3599 - 608; http://dx.doi.org/10.1038/sj.emboj.7600372; PMID: 15329672
  • GraceffaP, DominguezR. Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J Biol Chem2003; 278:34172 - 80; http://dx.doi.org/10.1074/jbc.M303689200; PMID: 12813032
  • DominguezR, HolmesKC. Actin structure and function. Annu Rev Biophys2011; 40:169 - 86; http://dx.doi.org/10.1146/annurev-biophys-042910-155359; PMID: 21314430
  • McLaughlinPJ, GoochJT, MannherzHG, WeedsAG. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature1993; 364:685 - 92; http://dx.doi.org/10.1038/364685a0; PMID: 8395021
  • OtterbeinLR, GraceffaP, DominguezR. The crystal structure of uncomplexed actin in the ADP state. Science2001; 293:708 - 11; http://dx.doi.org/10.1126/science.1059700; PMID: 11474115
  • HolmesKC, KabschW. Muscle proteins: actin. Curr Opin Struct Biol1991; 1:270 - 80; http://dx.doi.org/10.1016/0959-440X(91)90073-3
  • HolmesKC, PoppD, GebhardW, KabschW. Atomic model of the actin filament. Nature1990; 347:44 - 9; http://dx.doi.org/10.1038/347044a0; PMID: 2395461
  • LorenzM, PoppD, HolmesKC. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol1993; 234:826 - 36; http://dx.doi.org/10.1006/jmbi.1993.1628; PMID: 8254675
  • FujiiT, IwaneAH, YanagidaT, NambaK. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature2010; 467:724 - 8; http://dx.doi.org/10.1038/nature09372; PMID: 20844487
  • EgelmanEH. The structure of F-actin. J Muscle Res Cell Motil1985; 6:129 - 51; http://dx.doi.org/10.1007/BF00713056; PMID: 3897278
  • HansonJ, LowyJ. The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol1963; 6:46 - IN5; http://dx.doi.org/10.1016/S0022-2836(63)80081-9
  • BertazzonA, TianGH, LamblinA, TsongTY. Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry1990; 29:291 - 8; http://dx.doi.org/10.1021/bi00453a040; PMID: 2108718
  • ContaxisCC, BigelowCC, ZarkadasCG. The thermal denaturation of bovine cardiac G-actin. Can J Biochem1977; 55:325 - 31; http://dx.doi.org/10.1139/o77-045; PMID: 858084
  • Le BihanT, GicquaudC. Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem Biophys Res Commun1993; 194:1065 - 73; http://dx.doi.org/10.1006/bbrc.1993.1930; PMID: 8352763
  • TuroverovKK, BiktashevAG, KhaitlinaSY, KuznetsovaIM. The structure and dynamics of partially folded actin. Biochemistry1999; 38:6261 - 9; http://dx.doi.org/10.1021/bi9900976; PMID: 10320355
  • TatunashviliLV, PrivalovPL. [Calorimetric study of G-actin denaturation]. Biofizika1984; 29:583 - 5; PMID: 6487667
  • WestJJ, NagyB, GergelyJ. Free adenosine diphosphate as an intermediary in the phosphorylation by creatine phosphate of adenosine diphosphate bound to actin. J Biol Chem1967; 242:1140 - 5; PMID: 4290314
  • KuznetsovaIM, Khaitlina SYu, KonditerovSN, SurinAM, TuroverovKK. Changes of structure and intramolecular mobility in the course of actin denaturation. Biophys Chem1988; 32:73 - 8; http://dx.doi.org/10.1016/0301-4622(88)85035-X; PMID: 3233315
  • TuroverovKK, KuznetsovaIM, KhaitlinaSY, UverskiiVN. Unusual Combination of the Distorted Structure and Frozen Internal Mobility in Inactivated Actin Molecule. Protein Pept Lett1999; 6:73 - 8
  • KuznetsovaIM, TuroverovKK. [Polarization of intrinsic fluorescence of proteins. III. Intramolecular submobility of tryptophan residues]. Mol Biol (Mosk)1983; 17:741 - 54; PMID: 6621523
  • KuznetsovaIM, TuroverovKK, UverskyVN. Inactivated actin, an aggregate comprised of partially-folded monomers, has a overall native-like packing density. Protein Pept Lett1999; 6:173 - 8
  • TuroverovKK, VerkhushaVV, ShavlovskyMM, BiktashevAG, PovarovaOI, KuznetsovaIM. Kinetics of actin unfolding induced by guanidine hydrochloride. Biochemistry2002; 41:1014 - 9; http://dx.doi.org/10.1021/bi015548c; PMID: 11790125
  • KuznetsovaIM, StepanenkoOV, StepanenkoOV, PovarovaOI, BiktashevAG, VerkhushaVV, ShavlovskyMM, TuroverovKK. The place of inactivated actin and its kinetic predecessor in actin folding-unfolding. Biochemistry2002; 41:13127 - 32; http://dx.doi.org/10.1021/bi026412x; PMID: 12403613
  • KuznetsovaIM, TuroverovKK, UverskyVN. Use of the phase diagram method to analyze the protein unfolding-refolding reactions: fishing out the “invisible” intermediates. J Proteome Res2004; 3:485 - 94; http://dx.doi.org/10.1021/pr034094y; PMID: 15253430
  • PovarovaOI, KuznetsovaIM, TuroverovKK. [Physical-chemical properties of actin in different structural states. New ideas about its folding-unfolding pathways]. Tsitologiia2005; 47:953 - 77; PMID: 16706199
  • AltschulerGM, KlugDR, WillisonKR. Unfolding energetics of G-alpha-actin: a discrete intermediate can be re-folded to the native state by CCT. J Mol Biol2005; 353:385 - 96; http://dx.doi.org/10.1016/j.jmb.2005.07.062; PMID: 16171816
  • PovarovaOI, KuznetsovaIM, TuroverovKK. Differences in the pathways of proteins unfolding induced by urea and guanidine hydrochloride: molten globule state and aggregates. PLoS One2010; 5:e15035; http://dx.doi.org/10.1371/journal.pone.0015035; PMID: 21152408
  • AnufrievaEV, NekrasovaTN, ShevelevaTV, KrakovyakMG. Structure and structural transformations of macromolecules water-soluble polymers and luminescence of magnesium salt of 8-anilinenaphthalene-1-sulfonic acid. [russian]Vysokomol Soed1994; 36:449 - 56
  • MasonPE, NeilsonGW, EnderbyJE, SaboungiML, DempseyCE, MacKerellADJr., BradyJW. The structure of aqueous guanidinium chloride solutions. J Am Chem Soc2004; 126:11462 - 70; http://dx.doi.org/10.1021/ja040034x; PMID: 15366892
  • Guzman-LunaV, Garza-RamosG. The folding pathway of glycosomal triosephosphate isomerase: structural insights into equilibrium intermediates. Proteins2012; 80:1669 - 82; http://dx.doi.org/10.1002/prot.24063; PMID: 22411500
  • WangS, LengXY, YanYB. The benefits of being β-crystallin heteromers: βB1-crystallin protects βA3-crystallin against aggregation during co-refolding. Biochemistry2011; 50:10451 - 61; http://dx.doi.org/10.1021/bi201375p; PMID: 22032798
  • De La CruzEM, PollardTD. Nucleotide-free actin: stabilization by sucrose and nucleotide binding kinetics. Biochemistry1995; 34:5452 - 61; http://dx.doi.org/10.1021/bi00016a016; PMID: 7727403
  • KasaiM, NakanoE, OosawaF. Polymerization of Actin Free from Nucleotides and Divalent Cations. Biochim Biophys Acta1965; 94:494 - 503; http://dx.doi.org/10.1016/0926-6585(65)90058-0; PMID: 14314357
  • TuroverovKK, KuznetsovaIM. Intrinsic fluorescence of Actin. J Fluoresc2003; 13:105 - 11; http://dx.doi.org/10.1023/A:1022366816812
  • FeldmanDE, FrydmanJ. Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol2000; 10:26 - 33; http://dx.doi.org/10.1016/S0959-440X(99)00044-5; PMID: 10679467
  • FrydmanJ, NimmesgernE, Erdjument-BromageH, WallJS, TempstP, HartlFU. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J1992; 11:4767 - 78; PMID: 1361170
  • GaoY, ThomasJO, ChowRL, LeeGH, CowanNJ. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell1992; 69:1043 - 50; http://dx.doi.org/10.1016/0092-8674(92)90622-J; PMID: 1351421
  • LewisVA, HynesGM, ZhengD, SaibilH, WillisonK. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature1992; 358:249 - 52; http://dx.doi.org/10.1038/358249a0; PMID: 1630492
  • Martín-BenitoJ, BoskovicJ, Gómez-PuertasP, CarrascosaJL, SimonsCT, LewisSA, BartoliniF, CowanNJ, ValpuestaJM. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J2002; 21:6377 - 86; http://dx.doi.org/10.1093/emboj/cdf640; PMID: 12456645
  • NeirynckK, WaterschootD, VandekerckhoveJ, AmpeC, RommelaereH. Actin interacts with CCT via discrete binding sites: a binding transition-release model for CCT-mediated actin folding. J Mol Biol2006; 355:124 - 38; http://dx.doi.org/10.1016/j.jmb.2005.10.051; PMID: 16300788
  • AltschulerGM, WillisonKR. Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface2008; 5:1391 - 408; http://dx.doi.org/10.1098/rsif.2008.0185; PMID: 18708324
  • FrankelS, CondeelisJ, LeinwandL. Expression of actin in Escherichia coli. Aggregation, solubilization, and functional analysis. J Biol Chem1990; 265:17980 - 7; PMID: 2211676
  • KarlssonR. Expression of chicken beta-actin in Saccharomyces cerevisiae. Gene1988; 68:249 - 57; http://dx.doi.org/10.1016/0378-1119(88)90027-3; PMID: 3065145
  • VerkhushaVV, ShavlovskyMM, NevzglyadovaOV, GaivoronskyAA, ArtemovAV, StepanenkoOV, KuznetsovaIM, TuroverovKK. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res2003; 3:105 - 11; PMID: 12702253
  • AdamsCL, NelsonWJ, SmithSJ. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion. J Cell Biol1996; 135:1899 - 911; http://dx.doi.org/10.1083/jcb.135.6.1899; PMID: 8991100
  • Fernandez-ValleC, GormanD, GomezAM, BungeMB. Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci1997; 17:241 - 50; PMID: 8987752
  • WolyniakMJ, SundstromP. Role of actin cytoskeletal dynamics in activation of the cyclic AMP pathway and HWP1 gene expression in Candida albicans. Eukaryot Cell2007; 6:1824 - 40; http://dx.doi.org/10.1128/EC.00188-07; PMID: 17715368
  • FujiwaraK, PorterME, PollardTD. Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol1978; 79:268 - 75; http://dx.doi.org/10.1083/jcb.79.1.268; PMID: 359574
  • MashimaT, NaitoM, NoguchiK, MillerDK, NicholsonDW, TsuruoT. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene1997; 14:1007 - 12; http://dx.doi.org/10.1038/sj.onc.1200919; PMID: 9070648
  • WangKK. Calpain and caspase: can you tell the difference?. Trends Neurosci2000; 23:20 - 6; http://dx.doi.org/10.1016/S0166-2236(99)01479-4; PMID: 10631785
  • HuotJ, HouleF, RousseauS, DeschesnesRG, ShahGM, LandryJ. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol1998; 143:1361 - 73; http://dx.doi.org/10.1083/jcb.143.5.1361; PMID: 9832563
  • DominguezR. Structural insights into de novo actin polymerization. Curr Opin Struct Biol2010; 20:217 - 25; http://dx.doi.org/10.1016/j.sbi.2009.12.012; PMID: 20096561
  • EvangelistaM, ZigmondS, BooneC. Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci2003; 116:2603 - 11; http://dx.doi.org/10.1242/jcs.00611; PMID: 12775772
  • PollardTD, BlanchoinL, MullinsRD. Actin dynamics. J Cell Sci2001; 114:3 - 4; PMID: 11112680
  • Firat-KaralarEN, WelchMD. New mechanisms and functions of actin nucleation. Curr Opin Cell Biol2011; 23:4 - 13; http://dx.doi.org/10.1016/j.ceb.2010.10.007; PMID: 21093244
  • BurtnickLD, UrosevD, IrobiE, NarayanK, RobinsonRC. Structure of the N-terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF. EMBO J2004; 23:2713 - 22; http://dx.doi.org/10.1038/sj.emboj.7600280; PMID: 15215896
  • WinderSJ, AyscoughKR. Actin-binding proteins. J Cell Sci2005; 118:651 - 4; http://dx.doi.org/10.1242/jcs.01670; PMID: 15701920
  • HertzogM, van HeijenoortC, DidryD, GaudierM, CoutantJ, GigantB, DidelotG, PréatT, KnossowM, GuittetE, et al. The beta-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell2004; 117:611 - 23; http://dx.doi.org/10.1016/S0092-8674(04)00403-9; PMID: 15163409
  • VartiainenMK. Nuclear actin dynamics--from form to function. FEBS Lett2008; 582:2033 - 40; http://dx.doi.org/10.1016/j.febslet.2008.04.010; PMID: 18423404
  • VisegrádyB, LorinczyD, HildG, SomogyiB, NyitraiM. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett2005; 579:6 - 10; http://dx.doi.org/10.1016/j.febslet.2004.11.023; PMID: 15620683
  • GonsiorSM, PlatzS, BuchmeierS, ScheerU, JockuschBM, HinssenH. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J Cell Sci1999; 112:797 - 809; PMID: 10036230
  • HofmannW, ReichartB, EwaldA, MüllerE, SchmittI, StauberRH, LottspeichF, JockuschBM, ScheerU, HauberJ, et al. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol2001; 152:895 - 910; http://dx.doi.org/10.1083/jcb.152.5.895; PMID: 11238447
  • KraussSW, ChenC, PenmanS, HealdR. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc Natl Acad Sci U S A2003; 100:10752 - 7; http://dx.doi.org/10.1073/pnas.1934680100; PMID: 12960380
  • McDonaldD, CarreroG, AndrinC, de VriesG, HendzelMJ. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol2006; 172:541 - 52; http://dx.doi.org/10.1083/jcb.200507101; PMID: 16476775
  • NunezE, KwonYS, HuttKR, HuQ, CardamoneMD, OhgiKA, Garcia-BassetsI, RoseDW, GlassCK, RosenfeldMG, et al. Nuclear receptor-enhanced transcription requires motor- and LSD1-dependent gene networking in interchromatin granules. Cell2008; 132:996 - 1010; http://dx.doi.org/10.1016/j.cell.2008.01.051; PMID: 18358812
  • McGoughA, PopeB, ChiuW, WeedsA. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol1997; 138:771 - 81; http://dx.doi.org/10.1083/jcb.138.4.771; PMID: 9265645
  • SzklarczykD, FranceschiniA, KuhnM, SimonovicM, RothA, MinguezP, DoerksT, StarkM, MullerJ, BorkP, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res2011; 39:D561 - 8; http://dx.doi.org/10.1093/nar/gkq973; PMID: 21045058
  • ObradovicZ, PengK, VuceticS, RadivojacP, DunkerAK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins2005; 61:Suppl 7176 - 82; http://dx.doi.org/10.1002/prot.20735; PMID: 16187360
  • ObradovicZ, PengK, VuceticS, RadivojacP, BrownCJ, DunkerAK. Predicting intrinsic disorder from amino acid sequence. Proteins2003; 53:Suppl 6566 - 72; http://dx.doi.org/10.1002/prot.10532; PMID: 14579347
  • XueB, DunbrackRL, WilliamsRW, DunkerAK, UverskyVN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta2010; 1804:996 - 1010; http://dx.doi.org/10.1016/j.bbapap.2010.01.011; PMID: 20100603
  • OatesME, RomeroP, IshidaT, GhalwashM, MiziantyMJ, XueB, DosztányiZ, UverskyVN, ObradovicZ, KurganL, et al. D²P²: database of disordered protein predictions. Nucleic Acids Res2013; 41:D508 - 16; http://dx.doi.org/10.1093/nar/gks1226; PMID: 23203878
  • UverskyVN, OldfieldCJ, DunkerAK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit2005; 18:343 - 84; http://dx.doi.org/10.1002/jmr.747; PMID: 16094605
  • HastyJ, CollinsJJ. Protein interactions. Unspinning the web. Nature2001; 411:30 - 1; http://dx.doi.org/10.1038/35075182; PMID: 11333958
  • Landsteiner K. The Specificity of Serological Reactions. Mineola, New York: Courier Dover Publications, 1936.
  • PaulingL. A theory of the structure and process of formation of antibodies. J Am Chem Soc1940; 62:2643 - 57; http://dx.doi.org/10.1021/ja01867a018
  • KarushF. Heterogeneity of the binding sites of bovine serum albumin. J Am Chem Soc1950; 72:2705 - 13; http://dx.doi.org/10.1021/ja01162a099
  • MeadorWE, MeansAR, QuiochoFA. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science1993; 262:1718 - 21; http://dx.doi.org/10.1126/science.8259515; PMID: 8259515
  • KriwackiRW, HengstL, TennantL, ReedSI, WrightPE. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci U S A1996; 93:11504 - 9; http://dx.doi.org/10.1073/pnas.93.21.11504; PMID: 8876165
  • UverskyVN. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn2003; 21:211 - 34; http://dx.doi.org/10.1080/07391102.2003.10506918; PMID: 12956606
  • DunkerAK, GarnerE, GuilliotS, RomeroP, AlbrechtK, HartJ, ObradovicZ, KissingerC, VillafrancaJE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput1998; •••:473 - 84; PMID: 9697205
  • PatilA, NakamuraH. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett2006; 580:2041 - 5; http://dx.doi.org/10.1016/j.febslet.2006.03.003; PMID: 16542654
  • HaynesC, OldfieldCJ, JiF, KlitgordN, CusickME, RadivojacP, UverskyVN, VidalM, IakouchevaLM. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol2006; 2:e100; http://dx.doi.org/10.1371/journal.pcbi.0020100; PMID: 16884331
  • EkmanD, LightS, BjörklundAK, ElofssonA. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae?. Genome Biol2006; 7:R45; http://dx.doi.org/10.1186/gb-2006-7-6-r45; PMID: 16780599
  • DosztányiZ, ChenJ, DunkerAK, SimonI, TompaP. Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res2006; 5:2985 - 95; http://dx.doi.org/10.1021/pr060171o; PMID: 17081050
  • SinghGP, GanapathiM, SandhuKS, DashD. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins2006; 62:309 - 15; http://dx.doi.org/10.1002/prot.20746; PMID: 16299712
  • MarinissenMJ, GutkindJS. Scaffold proteins dictate Rho GTPase-signaling specificity. Trends Biochem Sci2005; 30:423 - 6; http://dx.doi.org/10.1016/j.tibs.2005.06.006; PMID: 15996870
  • JaffeAB, AspenströmP, HallA. Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol2004; 24:1736 - 46; http://dx.doi.org/10.1128/MCB.24.4.1736-1746.2004; PMID: 14749388
  • JaffeAB, HallA. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol2005; 21:247 - 69; http://dx.doi.org/10.1146/annurev.cellbio.21.020604.150721; PMID: 16212495
  • HohensteinP, GilesRH. BRCA1: a scaffold for p53 response?. Trends Genet2003; 19:489 - 94; http://dx.doi.org/10.1016/S0168-9525(03)00193-8; PMID: 12957542
  • RuiY, XuZ, LinS, LiQ, RuiH, LuoW, ZhouHM, CheungPY, WuZ, YeZ, et al. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J2004; 23:4583 - 94; http://dx.doi.org/10.1038/sj.emboj.7600475; PMID: 15526030
  • SalahshorS, WoodgettJR. The links between axin and carcinogenesis. J Clin Pathol2005; 58:225 - 36; http://dx.doi.org/10.1136/jcp.2003.009506; PMID: 15735151
  • WongW, ScottJD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol2004; 5:959 - 70; http://dx.doi.org/10.1038/nrm1527; PMID: 15573134
  • CarpousisAJ. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol2007; 61:71 - 87; http://dx.doi.org/10.1146/annurev.micro.61.080706.093440; PMID: 17447862
  • HanJD, BertinN, HaoT, GoldbergDS, BerrizGF, ZhangLV, DupuyD, WalhoutAJ, CusickME, RothFP, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature2004; 430:88 - 93; http://dx.doi.org/10.1038/nature02555; PMID: 15190252
  • HartwellLH, HopfieldJJ, LeiblerS, MurrayAW. From molecular to modular cell biology. Nature1999; 402:SupplC47 - 52; http://dx.doi.org/10.1038/35011540; PMID: 10591225
  • DunkerAK, CorteseMS, RomeroP, IakouchevaLM, UverskyVN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J2005; 272:5129 - 48; http://dx.doi.org/10.1111/j.1742-4658.2005.04948.x; PMID: 16218947
  • UverskyVN. Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci2008; 9:507 - 40; http://dx.doi.org/10.2174/138920308785915218; PMID: 18855701
  • DunkerAK, SilmanI, UverskyVN, SussmanJL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol2008; 18:756 - 64; http://dx.doi.org/10.1016/j.sbi.2008.10.002; PMID: 18952168
  • OlovnikovIA, KravchenkoJE, ChumakovPM. Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol2009; 19:32 - 41; http://dx.doi.org/10.1016/j.semcancer.2008.11.005; PMID: 19101635
  • UverskyVN. Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol2011; 43:1090 - 103; http://dx.doi.org/10.1016/j.biocel.2011.04.001; PMID: 21501695
  • DuttaS, BurkhardtK, YoungJ, SwaminathanGJ, MatsuuraT, HenrickK, NakamuraH, BermanHM. Data deposition and annotation at the worldwide protein data bank. Mol Biotechnol2009; 42:1 - 13; http://dx.doi.org/10.1007/s12033-008-9127-7; PMID: 19082769
  • Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K. Using VMD: An Introductory Tutorial. Current Protocols in Bioinformatics: John Wiley & Sons, Inc., 2002.
  • MerrittEA, BaconDJ. Raster3D: photorealistic molecular graphics. Methods Enzymol1997; 277:505 - 24; http://dx.doi.org/10.1016/S0076-6879(97)77028-9; PMID: 18488322
  • DurerZA, KudryashovDS, SawayaMR, AltenbachC, HubbellW, ReislerE. Structural states and dynamics of the D-loop in actin. Biophys J2012; 103:930 - 9; http://dx.doi.org/10.1016/j.bpj.2012.07.030; PMID: 23009842
  • OdaT, IwasaM, AiharaT, MaédaY, NaritaA. The nature of the globular- to fibrous-actin transition. Nature2009; 457:441 - 5; http://dx.doi.org/10.1038/nature07685; PMID: 19158791
  • PovarovaOI, KuznetsovaIM, TuroverovKK. Different disturbances--one pathway of protein unfolding. Actin folding-unfolding and misfolding. Cell Biol Int2007; 31:405 - 12; http://dx.doi.org/10.1016/j.cellbi.2007.01.025; PMID: 17336100