2,342
Views
36
CrossRef citations to date
0
Altmetric
Review

Evolution of the JAK-STAT pathway

&
Article: e22756 | Published online: 01 Jan 2013

References

  • Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 2002; 27:235 - 41; http://dx.doi.org/10.1016/S0968-0004(02)02085-6; PMID: 12076535
  • Renauld JC. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 2003; 3:667 - 76; http://dx.doi.org/10.1038/nri1153; PMID: 12974481
  • Wang Y, Levy DE. Comparative evolutionary genomics of the STAT family of transcription factors. JAK-STAT 2012; 1:23 - 36; http://dx.doi.org/10.4161/jkst.19418
  • Liongue C, O’Sullivan LA, Trengove MC, Ward AC. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development. PLoS One 2012; 7:e32777; http://dx.doi.org/10.1371/journal.pone.0032777; PMID: 22412924
  • Liongue C, Ward AC. Evolution of Class I cytokine receptors. BMC Evol Biol 2007; 7:120; http://dx.doi.org/10.1186/1471-2148-7-120; PMID: 17640376
  • Boulay JL, O’Shea JJ, Paul WE. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 2003; 19:159 - 63; http://dx.doi.org/10.1016/S1074-7613(03)00211-5; PMID: 12932349
  • Lim WA, Pawson T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 2010; 142:661 - 7; http://dx.doi.org/10.1016/j.cell.2010.08.023; PMID: 20813250
  • Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851 - 68; http://dx.doi.org/10.1016/j.molcel.2006.06.001; PMID: 16793553
  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127:635 - 48; http://dx.doi.org/10.1016/j.cell.2006.09.026; PMID: 17081983
  • Moorhead GB, De Wever V, Templeton G, Kerk D. Evolution of protein phosphatases in plants and animals. Biochem J 2009; 417:401 - 9; http://dx.doi.org/10.1042/BJ20081986; PMID: 19099538
  • Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 2001; 21:7117 - 36; http://dx.doi.org/10.1128/MCB.21.21.7117-7136.2001; PMID: 11585896
  • Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000; 101:259 - 70; http://dx.doi.org/10.1016/S0092-8674(00)80836-3; PMID: 10847681
  • Tepass U. FERM proteins in animal morphogenesis. Curr Opin Genet Dev 2009; 19:357 - 67; http://dx.doi.org/10.1016/j.gde.2009.05.006; PMID: 19596566
  • Frame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 2010; 11:802 - 14; http://dx.doi.org/10.1038/nrm2996; PMID: 20966971
  • Berardi MJ, Sun C, Zehr M, Abildgaard F, Peng J, Speck NA, et al. The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 1999; 7:1247 - 56; http://dx.doi.org/10.1016/S0969-2126(00)80058-1; PMID: 10545320
  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res 2012; 40:Database Issue D290 - 301; http://dx.doi.org/10.1093/nar/gkr1065; PMID: 22127870
  • Horvath CM. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000; 25:496 - 502; http://dx.doi.org/10.1016/S0968-0004(00)01624-8; PMID: 11050435
  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1 - 24; http://dx.doi.org/10.1016/S0378-1119(02)00398-0; PMID: 12039028
  • Stark GR, Darnell JE Jr.. The JAK-STAT pathway at twenty. Immunity 2012; 36:503 - 14; http://dx.doi.org/10.1016/j.immuni.2012.03.013; PMID: 22520844
  • Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971 - 6; http://dx.doi.org/10.1038/nsmb.2099; PMID: 21841788
  • Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16:293 - 322; http://dx.doi.org/10.1146/annurev.immunol.16.1.293; PMID: 9597132
  • Park C, Lecomte MJ, Schindler C. Murine Stat2 is uncharacteristically divergent. Nucleic Acids Res 1999; 27:4191 - 9; http://dx.doi.org/10.1093/nar/27.21.4191; PMID: 10518610
  • Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 2005; 17:1323 - 32; http://dx.doi.org/10.1016/j.cellsig.2005.05.016; PMID: 16084691
  • Yoshimura A, Nishinakamura H, Matsumura Y, Hanada T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther 2005; 7:100 - 10; http://dx.doi.org/10.1186/ar1741; PMID: 15899058
  • Feng ZP, Chandrashekaran IR, Low A, Speed TP, Nicholson SE, Norton RS. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80:946 - 57; http://dx.doi.org/10.1002/prot.23252; PMID: 22423360
  • Piessevaux J, Lavens D, Peelman F, Tavernier J. The many faces of the SOCS box. Cytokine Growth Factor Rev 2008; 19:371 - 81; http://dx.doi.org/10.1016/j.cytogfr.2008.08.006; PMID: 18948053
  • Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461:819 - 22; http://dx.doi.org/10.1038/nature08448; PMID: 19783980
  • Li WX. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 2008; 18:545 - 51; http://dx.doi.org/10.1016/j.tcb.2008.08.008; PMID: 18848449
  • Chothia C, Gough J, Vogel C, Teichmann SA. Evolution of the protein repertoire. Science 2003; 300:1701 - 3; http://dx.doi.org/10.1126/science.1085371; PMID: 12805536
  • Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 2012; 5:ra35; http://dx.doi.org/10.1126/scisignal.2002733; PMID: 22550341
  • Araki T, Kawata T, Williams JG. Identification of the kinase that activates a nonmetazoan STAT gives insights into the evolution of phosphotyrosine-SH2 domain signaling. Proc Natl Acad Sci USA 2012; 109:1931 - 7; http://dx.doi.org/10.1073/pnas.1202715109; PMID: 22308335
  • Shiu SH, Li WH. Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. Mol Biol Evol 2004; 21:828 - 40; http://dx.doi.org/10.1093/molbev/msh077; PMID: 14963097
  • Tan CS, Pasculescu A, Lim WA, Pawson T, Bader GD, Linding R. Positive selection of tyrosine loss in metazoan evolution. Science 2009; 325:1686 - 8; http://dx.doi.org/10.1126/science.1174301; PMID: 19589966
  • Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 2011; 4:ra83; http://dx.doi.org/10.1126/scisignal.2002105; PMID: 22155787
  • Liu BA, Engelmann BW, Nash PD. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 2012; 586:2597 - 605; http://dx.doi.org/10.1016/j.febslet.2012.04.054; PMID: 22569091
  • Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 2002; 129:908 - 25; http://dx.doi.org/10.1104/pp.004002; PMID: 12068129
  • Howard PK, Gamper M, Hunter T, Firtel RA. Regulation by protein-tyrosine phosphatase PTP2 is distinct from that by PTP1 during Dictyostelium growth and development. Mol Cell Biol 1994; 14:5154 - 64; PMID: 7518559
  • Howard PK, Sefton BM, Firtel RA. Analysis of a spatially regulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium. Cell 1992; 71:637 - 47; http://dx.doi.org/10.1016/0092-8674(92)90597-6; PMID: 1423620
  • Pincus D, Letunic I, Bork P, Lim WA. Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci U S A 2008; 105:9680 - 4; http://dx.doi.org/10.1073/pnas.0803161105; PMID: 18599463
  • Baines AJ. A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function. BMC Genomics 2006; 7:85; http://dx.doi.org/10.1186/1471-2164-7-85; PMID: 16626485
  • Richards DE, Peng J, Harberd NP. Plant GRAS and metazoan STATs: one family?. Bioessays 2000; 22:573 - 7; http://dx.doi.org/10.1002/(SICI)1521-1878(200006)22:6<573::AID-BIES10>3.0.CO;2-H; PMID: 10842311
  • Liu M, Grigoriev A. Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling?. Trends Genet 2004; 20:399 - 403; http://dx.doi.org/10.1016/j.tig.2004.06.013; PMID: 15313546
  • Liu M, Walch H, Wu S, Grigoriev A. Significant expansion of exon-bordering protein domains during animal proteome evolution. Nucleic Acids Res 2005; 33:95 - 105; http://dx.doi.org/10.1093/nar/gki152; PMID: 15640447
  • Schmidt EE, Davies CJ. The origins of polypeptide domains. Bioessays 2007; 29:262 - 70; http://dx.doi.org/10.1002/bies.20546; PMID: 17295290
  • Filippakopoulos P, Müller S, Knapp S. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr Opin Struct Biol 2009; 19:643 - 9; http://dx.doi.org/10.1016/j.sbi.2009.10.001; PMID: 19926274
  • Suga H, Katoh K, Miyata T. Sponge homologs of vertebrate protein tyrosine kinases and frequent domain shufflings in the early evolution of animals before the parazoan-eumetazoan split. Gene 2001; 280:195 - 201; http://dx.doi.org/10.1016/S0378-1119(01)00784-3; PMID: 11738833
  • Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, et al. The genome of the social amoeba Dictyostelium discoideum. Nature 2005; 435:43 - 57; http://dx.doi.org/10.1038/nature03481; PMID: 15875012
  • Kawata T. STAT signaling in Dictyostelium development. Dev Growth Differ 2011; 53:548 - 57; http://dx.doi.org/10.1111/j.1440-169X.2010.01243.x; PMID: 21534947
  • Dierking K, Polanowska J, Omi S, Engelmann I, Gut M, Lembo F, et al. Unusual regulation of a STAT protein by an SLC6 family transporter in C. elegans epidermal innate immunity. Cell Host Microbe 2011; 9:425 - 35; http://dx.doi.org/10.1016/j.chom.2011.04.011; PMID: 21575913
  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007; 317:86 - 94; http://dx.doi.org/10.1126/science.1139158; PMID: 17615350
  • Wang Y, Levy DE. C. elegans STAT: evolution of a regulatory switch. FASEB J 2006; 20:1641 - 52; http://dx.doi.org/10.1096/fj.06-6051com; PMID: 16873887
  • Gutch MJ, Flint AJ, Keller J, Tonks NK, Hengartner MO. The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development. Genes Dev 1998; 12:571 - 85; http://dx.doi.org/10.1101/gad.12.4.571; PMID: 9472025
  • Liongue C, John LB, Ward A. Origins of adaptive immunity. Crit Rev Immunol 2011; 31:61 - 71; http://dx.doi.org/10.1615/CritRevImmunol.v31.i1.60; PMID: 21395512
  • Shi S, Calhoun HC, Xia F, Li J, Le L, Li WX. JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 2006; 38:1071 - 6; http://dx.doi.org/10.1038/ng1860; PMID: 16892059
  • Shi S, Larson K, Guo D, Lim SJ, Dutta P, Yan SJ, et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol 2008; 10:489 - 96; http://dx.doi.org/10.1038/ncb1713; PMID: 18344984
  • Usacheva A, Kotenko S, Witte MM, Colamonici OR. Two distinct domains within the N-terminal region of Janus kinase 1 interact with cytokine receptors. J Immunol 2002; 169:1302 - 8; PMID: 12133952
  • Kouro T, Kikuchi Y, Kanazawa H, Hirokawa K, Harada N, Shiiba M, et al. Critical proline residues of the cytoplasmic domain of the IL-5 receptor alpha chain and its function in IL-5-mediated activation of JAK kinase and STAT5. Int Immunol 1996; 8:237 - 45; http://dx.doi.org/10.1093/intimm/8.2.237; PMID: 8671609
  • Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005; 3:e314; http://dx.doi.org/10.1371/journal.pbio.0030314; PMID: 16128622
  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004; 431:946 - 57; http://dx.doi.org/10.1038/nature03025; PMID: 15496914
  • Wolfe KH. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2001; 2:333 - 41; http://dx.doi.org/10.1038/35072009; PMID: 11331899
  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008; 453:1064 - 71; http://dx.doi.org/10.1038/nature06967; PMID: 18563158
  • Hino K, Satou Y, Yagi K, Satoh N. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VI. Genes for Wnt, TGFbeta, Hedgehog and JAK/STAT signaling pathways. Dev Genes Evol 2003; 213:264 - 72; http://dx.doi.org/10.1007/s00427-003-0318-8; PMID: 12739142
  • Hou XS, Melnick MB, Perrimon N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 1996; 84:411 - 9; http://dx.doi.org/10.1016/S0092-8674(00)81286-6; PMID: 8608595