3,108
Views
56
CrossRef citations to date
0
Altmetric
Special Focus Review

Interleukin-2 and STAT5 in regulatory T cell development and function

, &
Article: e23154 | Published online: 01 Jan 2013

References

  • Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75:253 - 61; http://dx.doi.org/10.1016/0092-8674(93)80067-O; PMID: 8402910
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155:1151 - 64; PMID: 7636184
  • Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011; 365:2067 - 77; http://dx.doi.org/10.1056/NEJMoa1105143; PMID: 22129253
  • Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP 3rd, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011; 365:2055 - 66; http://dx.doi.org/10.1056/NEJMoa1108188; PMID: 22129252
  • Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002; 17:167 - 78; http://dx.doi.org/10.1016/S1074-7613(02)00367-9; PMID: 12196288
  • Malek TR, Porter BO, Codias EK, Scibelli P, Yu A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 2000; 164:2905 - 14; PMID: 10706676
  • Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 2002; 196:851 - 7; http://dx.doi.org/10.1084/jem.20020190; PMID: 12235217
  • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 6:1142 - 51; http://dx.doi.org/10.1038/ni1263; PMID: 16227984
  • D’Cruz LM, Klein L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005; 6:1152 - 9; http://dx.doi.org/10.1038/ni1264; PMID: 16227983
  • Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007; 178:280 - 90; PMID: 17182565
  • Soper DM, Kasprowicz DJ, Ziegler SF. IL-2Rbeta links IL-2R signaling with Foxp3 expression. Eur J Immunol 2007; 37:1817 - 26; http://dx.doi.org/10.1002/eji.200737101; PMID: 17559173
  • Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 2008; 181:3285 - 90; PMID: 18714000
  • Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol 2012; 12:157 - 67; PMID: 22322317
  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2:301 - 6; http://dx.doi.org/10.1038/86302; PMID: 11276200
  • Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 2011; 208:1279 - 89; http://dx.doi.org/10.1084/jem.20110308; PMID: 21606508
  • Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004; 21:267 - 77; http://dx.doi.org/10.1016/j.immuni.2004.07.009; PMID: 15308106
  • Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 2006; 25:249 - 59; http://dx.doi.org/10.1016/j.immuni.2006.05.016; PMID: 16879995
  • Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 2007; 178:7032 - 41; PMID: 17513752
  • Lee HM, Bautista JL, Scott-Browne J, Mohan JF, Hsieh CS. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 2012; 37:475 - 86; http://dx.doi.org/10.1016/j.immuni.2012.07.009; PMID: 22921379
  • Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12:431 - 40; http://dx.doi.org/10.1016/S1074-7613(00)80195-8; PMID: 10795741
  • Lio CW, Dodson LF, Deppong CM, Hsieh CS, Green JM. CD28 facilitates the generation of Foxp3(-) cytokine responsive regulatory T cell precursors. J Immunol 2010; 184:6007 - 13; http://dx.doi.org/10.4049/jimmunol.1000019; PMID: 20421644
  • Vang KB, Yang J, Pagán AJ, Li LX, Wang J, Green JM, et al. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 2010; 184:4074 - 7; http://dx.doi.org/10.4049/jimmunol.0903933; PMID: 20228198
  • Tai X, Cowan M, Feigenbaum L, Singer A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2005; 6:152 - 62; http://dx.doi.org/10.1038/ni1160; PMID: 15640801
  • Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008; 28:100 - 11; http://dx.doi.org/10.1016/j.immuni.2007.11.021; PMID: 18199417
  • Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008; 28:112 - 21; http://dx.doi.org/10.1016/j.immuni.2007.11.022; PMID: 18199418
  • Long M, Park SG, Strickland I, Hayden MS, Ghosh S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 2009; 31:921 - 31; http://dx.doi.org/10.1016/j.immuni.2009.09.022; PMID: 20064449
  • Deenick EK, Elford AR, Pellegrini M, Hall H, Mak TW, Ohashi PS. c-Rel but not NF-kappaB1 is important for T regulatory cell development. Eur J Immunol 2010; 40:677 - 81; http://dx.doi.org/10.1002/eji.201040298; PMID: 20082358
  • Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Greene MI, et al. Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 2009; 31:932 - 40; http://dx.doi.org/10.1016/j.immuni.2009.10.006; PMID: 20064450
  • Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 2009; 206:3001 - 14; http://dx.doi.org/10.1084/jem.20091411; PMID: 19995950
  • Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 2008; 46:213 - 24; http://dx.doi.org/10.1016/j.molimm.2008.08.275; PMID: 18842300
  • Molinero LL, Yang J, Gajewski T, Abraham C, Farrar MA, Alegre ML. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J Immunol 2009; 182:6736 - 43; http://dx.doi.org/10.4049/jimmunol.0900498; PMID: 19454668
  • Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2009; 10:689 - 95; http://dx.doi.org/10.1038/ni.1760; PMID: 19536194
  • Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010; 463:808 - 12; http://dx.doi.org/10.1038/nature08750; PMID: 20072126
  • Fujii H, Ogasawara K, Otsuka H, Suzuki M, Yamamura K, Yokochi T, et al. Functional dissection of the cytoplasmic subregions of the IL-2 receptor betac chain in primary lymphocyte populations. EMBO J 1998; 17:6551 - 7; http://dx.doi.org/10.1093/emboj/17.22.6551; PMID: 9822600
  • Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007; 109:4368 - 75; http://dx.doi.org/10.1182/blood-2006-11-055756; PMID: 17227828
  • Smith KA, Gillis S, Baker PE, McKenzie D, Ruscetti FW. T-cell growth factor-mediated T-cell proliferation. Ann N Y Acad Sci 1979; 332:423 - 32; http://dx.doi.org/10.1111/j.1749-6632.1979.tb47136.x; PMID: 316981
  • Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001; 2:882 - 8; http://dx.doi.org/10.1038/ni0901-882; PMID: 11526406
  • Wojciechowski W, Harris DP, Sprague F, Mousseau B, Makris M, Kusser K, et al. Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 2009; 30:421 - 33; http://dx.doi.org/10.1016/j.immuni.2009.01.006; PMID: 19249230
  • Pfitzner E, Jähne R, Wissler M, Stoecklin E, Groner B. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol 1998; 12:1582 - 93; http://dx.doi.org/10.1210/me.12.10.1582; PMID: 9773981
  • Nakajima H, Brindle PK, Handa M, Ihle JN. Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription. EMBO J 2001; 20:6836 - 44; http://dx.doi.org/10.1093/emboj/20.23.6836; PMID: 11726519
  • Rascle A, Johnston JA, Amati B. Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 2003; 23:4162 - 73; http://dx.doi.org/10.1128/MCB.23.12.4162-4173.2003; PMID: 12773560
  • Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci U S A 2003; 100:14742 - 7; http://dx.doi.org/10.1073/pnas.2433987100; PMID: 14645718
  • Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011; 35:109 - 22; http://dx.doi.org/10.1016/j.immuni.2011.03.029; PMID: 21723159
  • Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011; 478:250 - 4; http://dx.doi.org/10.1038/nature10434; PMID: 21937990
  • Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004; 173:6526 - 31; PMID: 15557141
  • Molinero LL, Miller ML, Evaristo C, Alegre ML. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-κB-dependent manner. J Immunol 2011; 186:4609 - 17; http://dx.doi.org/10.4049/jimmunol.1002361; PMID: 21411734
  • Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM. IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J Immunol 2011; 186:6329 - 37; http://dx.doi.org/10.4049/jimmunol.1100061; PMID: 21525380
  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007; 5:e38; http://dx.doi.org/10.1371/journal.pbio.0050038; PMID: 17298177
  • Beres A, Komorowski R, Mihara M, Drobyski WR. Instability of Foxp3 expression limits the ability of induced regulatory T cells to mitigate graft versus host disease. Clin Cancer Res 2011; 17:3969 - 83; http://dx.doi.org/10.1158/1078-0432.CCR-10-3347; PMID: 21558402
  • Horwitz DA, Zheng SG, Wang J, Gray JD. Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 2008; 38:912 - 5; http://dx.doi.org/10.1002/eji.200738109; PMID: 18395858
  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 2007; 178:2018 - 27; PMID: 17277105
  • Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182:259 - 73; PMID: 19109157
  • Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 2007; 204:1543 - 51; PMID: 17591856
  • Vogtenhuber C, Bucher C, Highfill SL, Koch LK, Goren E, Panoskaltsis-Mortari A, et al. Constitutively active Stat5b in CD4+ T cells inhibits graft-versus-host disease lethality associated with increased regulatory T-cell potency and decreased T effector cell responses. Blood 2010; 116:466 - 74; http://dx.doi.org/10.1182/blood-2009-11-252825; PMID: 20442366
  • Cheng G, Yuan X, Tsai MS, Podack ER, Yu A, Malek TR. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. J Immunol 2012; 189:1780 - 91; http://dx.doi.org/10.4049/jimmunol.1103768; PMID: 22786769
  • Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 2011; 12:247 - 54; http://dx.doi.org/10.1038/ni.1995; PMID: 21278738
  • Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 2008; 180:7112 - 6; PMID: 18490709
  • O’Malley JT, Sehra S, Thieu VT, Yu Q, Chang HC, Stritesky GL, et al. Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells. Immunology 2009; 127:587 - 95; http://dx.doi.org/10.1111/j.1365-2567.2008.03037.x; PMID: 19604309
  • Wei J, Duramad O, Perng OA, Reiner SL, Liu YJ, Qin FX. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2007; 104:18169 - 74; http://dx.doi.org/10.1073/pnas.0703642104; PMID: 17978190
  • Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciumè G, Muljo SA, et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 2012; 13:587 - 95; http://dx.doi.org/10.1038/ni.2286; PMID: 22544395