832
Views
15
CrossRef citations to date
0
Altmetric
Review

Redox regulation of Janus kinase

The elephant in the room

Article: e26141 | Received 28 May 2013, Accepted 13 Aug 2013, Published online: 19 Aug 2013

References

  • Cleland WW. Dithiothreitol, a New Protective Reagent for Sh Groups. Biochemistry 1964; 3:480 - 2; http://dx.doi.org/10.1021/bi00892a002; PMID: 14192894
  • Vallejos RH, Ravizzini RA, Andreo CS. Sulphydryl groups in photosynthetic energy conservation. IV. Inhibition of the ATPase of chloroplast coupling factor 1 by sulphydryl reagents. Biochim Biophys Acta 1977; 459:20 - 6; http://dx.doi.org/10.1016/0005-2728(77)90004-4; PMID: 137745
  • Kim DS, Churchich JE. The reversible oxidation of vicinal SH groups in 4-aminobutyrate aminotransferase. Probes of conformational changes. J Biol Chem 1987; 262:14250 - 4; PMID: 3654661
  • Duhé RJ, Evans GA, Erwin RA, Kirken RA, Cox GW, Farrar WL. Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci U S A 1998; 95:126 - 31; http://dx.doi.org/10.1073/pnas.95.1.126; PMID: 9419340
  • Seth D, Stamler JS. The SNO-proteome: causation and classifications. Curr Opin Chem Biol 2011; 15:129 - 36; http://dx.doi.org/10.1016/j.cbpa.2010.10.012; PMID: 21087893
  • Pryor WA, Church DF, Govindan CK, Crank G. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 1982; 47:156 - 9; http://dx.doi.org/10.1021/jo00340a038
  • Mamoon NM, Smith JK, Chatti K, Lee S, Kundrapu K, Duhé RJ. Multiple cysteine residues are implicated in Janus kinase 2-mediated catalysis. Biochemistry 2007; 46:14810 - 8; http://dx.doi.org/10.1021/bi701118u; PMID: 18052197
  • Smith JK, Patil CN, Patlolla S, Gunter BW, Booz GW, Duhé RJ. Identification of a redox-sensitive switch within the JAK2 catalytic domain. Free Radic Biol Med 2012; 52:1101 - 10; http://dx.doi.org/10.1016/j.freeradbiomed.2011.12.025; PMID: 22281400
  • Rehder DS, Borges CR. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 2010; 49:7748 - 55; http://dx.doi.org/10.1021/bi1008694; PMID: 20712299
  • Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Fröhling S, Cullen D, Polakiewicz RD, Bernard OA, Boggon TJ, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006; 108:2770 - 9; http://dx.doi.org/10.1182/blood-2006-04-014712; PMID: 16804112
  • Hornakova T, Springuel L, Devreux J, Dusa A, Constantinescu SN, Knoops L, Renauld JC. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Haematologica 2011; 96:845 - 53; http://dx.doi.org/10.3324/haematol.2010.036350; PMID: 21393331
  • Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, Tasian SK, Loh ML, Su X, Liu W, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2009; 106:9414 - 8; http://dx.doi.org/10.1073/pnas.0811761106; PMID: 19470474
  • Brandes N, Schmitt S, Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 2009; 11:997 - 1014; http://dx.doi.org/10.1089/ars.2008.2285; PMID: 18999917
  • van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003; 423:773 - 7; http://dx.doi.org/10.1038/nature01681; PMID: 12802339
  • Kurdi M, Booz GW. Evidence that IL-6-type cytokine signaling in cardiomyocytes is inhibited by oxidative stress: parthenolide targets JAK1 activation by generating ROS. J Cell Physiol 2007; 212:424 - 31; http://dx.doi.org/10.1002/jcp.21033; PMID: 17385713
  • Di Bona D, Cippitelli M, Fionda C, Cammà C, Licata A, Santoni A, Craxì A. Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway. J Hepatol 2006; 45:271 - 9; http://dx.doi.org/10.1016/j.jhep.2006.01.037; PMID: 16595158
  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010; 38:Web Server issue W695-9; http://dx.doi.org/10.1093/nar/gkq313; PMID: 20439314
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539; http://dx.doi.org/10.1038/msb.2011.75; PMID: 21988835
  • Corcoran A, Cotter TG. Redox regulation of protein kinases. FEBS J 2013; 280:1944 - 65; http://dx.doi.org/10.1111/febs.12224; PMID: 23461806
  • Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 2005; 25:6391 - 403; http://dx.doi.org/10.1128/MCB.25.15.6391-6403.2005; PMID: 16024778
  • Kemble DJ, Sun G. Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci U S A 2009; 106:5070 - 5; http://dx.doi.org/10.1073/pnas.0806117106; PMID: 19273857
  • Lai KS, Jin Y, Graham DK, Witthuhn BA, Ihle JN, Liu ET. A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem 1995; 270:25028 - 36; http://dx.doi.org/10.1074/jbc.270.42.25028; PMID: 7559633
  • Grattan DR, Kokay IC. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 2008; 20:752 - 63; http://dx.doi.org/10.1111/j.1365-2826.2008.01736.x; PMID: 18601698
  • Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect 2012; 14:238 - 46; http://dx.doi.org/10.1016/j.micinf.2011.10.005; PMID: 22094132
  • Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 1997; 17:2497 - 501; PMID: 9111318
  • Chatti K, Farrar WL, Duhé RJ. Tyrosine phosphorylation of the Janus kinase 2 activation loop is essential for a high-activity catalytic state but dispensable for a basal catalytic state. Biochemistry 2004; 43:4272 - 83; http://dx.doi.org/10.1021/bi036109b; PMID: 15065871
  • Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 1995; 375:247 - 50; http://dx.doi.org/10.1038/375247a0; PMID: 7746328
  • Lukashova V, Chen Z, Duhé RJ, Rola-Pleszczynski M, Stanková J. Janus kinase 2 activation by the platelet-activating factor receptor (PAFR): roles of Tyk2 and PAFR C terminus. J Immunol 2003; 171:3794 - 800; PMID: 14500680
  • Kilpinen S, Ojala K, Kallioniemi O. Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome. PLoS One 2010; 5:e15068; http://dx.doi.org/10.1371/journal.pone.0015068; PMID: 21151926
  • Zouein FA, Duhé RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors 2011; 29:245 - 52; http://dx.doi.org/10.3109/08977194.2011.614949; PMID: 21892841
  • Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS One 2011; 6:e18522; http://dx.doi.org/10.1371/journal.pone.0018522; PMID: 21533163
  • Jäkel H, Weinl C, Hengst L. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene 2011; 30:3502 - 12; http://dx.doi.org/10.1038/onc.2011.68; PMID: 21423214
  • Duhé RJ, Clark EA, Farrar WL. Characterization of the in vitro kinase activity of a partially purified soluble GST/JAK2 fusion protein. Mol Cell Biochem 2002; 236:23 - 35; http://dx.doi.org/10.1023/A:1016186907376; PMID: 12190118
  • Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, Kouzarides T. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461:819 - 22; http://dx.doi.org/10.1038/nature08448; PMID: 19783980
  • Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, et al. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2012; 2:512 - 23; http://dx.doi.org/10.1158/2159-8290.CD-11-0324; PMID: 22684457
  • Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally A, Abdel-Wahab O, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012; 489:155 - 9; http://dx.doi.org/10.1038/nature11303; PMID: 22820254
  • Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, Xu CF, Neubert TA, Skoda RC, Hubbard SR, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971 - 6; http://dx.doi.org/10.1038/nsmb.2099; PMID: 21841788
  • Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 2012; 19:754 - 9; http://dx.doi.org/10.1038/nsmb.2348; PMID: 22820988
  • Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 2011; 8:57 - 64; http://dx.doi.org/10.1038/nchembio.736; PMID: 22158416
  • Abe J, Berk BC. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem 1999; 274:21003 - 10; http://dx.doi.org/10.1074/jbc.274.30.21003; PMID: 10409649
  • Marino SM, Gladyshev VN. Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid Redox Signal 2011; 15:135 - 46; http://dx.doi.org/10.1089/ars.2010.3561; PMID: 20812876
  • Guan KL, Dixon JE. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem 1991; 266:17026 - 30; PMID: 1654322
  • Streuli M, Krueger NX, Thai T, Tang M, Saito H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 1990; 9:2399 - 407; PMID: 1695146
  • Weibrecht I, Böhmer SA, Dagnell M, Kappert K, Ostman A, Böhmer FD. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med 2007; 43:100 - 10; http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.021; PMID: 17561098
  • Kaur N, Lu B, Monroe RK, Ward SM, Halvorsen SW. Inducers of oxidative stress block ciliary neurotrophic factor activation of Jak/STAT signaling in neurons. J Neurochem 2005; 92:1521 - 30; http://dx.doi.org/10.1111/j.1471-4159.2004.02990.x; PMID: 15748169
  • Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signaling in neurons by oxidative stress. Free Radic Biol Med 2006; 41:493 - 502; http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.023; PMID: 16843830
  • Monroe RK, Halvorsen SW. Mercury abolishes neurotrophic factor-stimulated Jak-STAT signaling in nerve cells by oxidative stress. Toxicol Sci 2006; 94:129 - 38; http://dx.doi.org/10.1093/toxsci/kfl073; PMID: 16896058
  • Jang EH, Park CS, Lee SK, Pie JE, Kang JH. Excessive nitric oxide attenuates leptin-mediated signal transducer and activator of transcription 3 activation. Life Sci 2007; 80:609 - 17; http://dx.doi.org/10.1016/j.lfs.2006.10.007; PMID: 17097687
  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998; 160:5729 - 34; PMID: 9637481
  • Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168:689 - 95; PMID: 11777962
  • Kalinowska M, Bazdar DA, Lederman MM, Funderburg N, Sieg SF. Decreased IL-7 responsiveness is related to oxidative stress in HIV disease. PLoS One 2013; 8:e58764; http://dx.doi.org/10.1371/journal.pone.0058764; PMID: 23505558
  • Kurdi M, Sivakumaran V, Duhé RJ, Aon MA, Paolocci N, Booz GW. Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes. Int J Biochem Cell Biol 2012; 44:2106 - 15; http://dx.doi.org/10.1016/j.biocel.2012.08.016; PMID: 22939972
  • Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 1998; 275:C1640 - 52; PMID: 9843726
  • Madamanchi NR, Li S, Patterson C, Runge MS. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 2001; 21:321 - 6; http://dx.doi.org/10.1161/01.ATV.21.3.321; PMID: 11231909
  • Tawfik A, Jin L, Banes-Berceli AK, Caldwell RB, Ogbi S, Shirley A, Barber D, Catravas JD, Stern DM, Fulton D, et al. Hyperglycemia and reactive oxygen species mediate apoptosis in aortic endothelial cells through Janus kinase 2. Vascul Pharmacol 2005; 43:320 - 6; http://dx.doi.org/10.1016/j.vph.2005.08.018; PMID: 16257269
  • Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000; 87:1195 - 201; http://dx.doi.org/10.1161/01.RES.87.12.1195; PMID: 11110778
  • Kirabo A, Kearns PN, Jarajapu YP, Sasser JM, Oh SP, Grant MB, Kasahara H, Cardounel AJ, Baylis C, Wagner KU, et al. Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species. Cardiovasc Res 2011; 91:171 - 9; http://dx.doi.org/10.1093/cvr/cvr059; PMID: 21354995
  • Modesti A, Bertolozzi I, Gamberi T, Marchetta M, Lumachi C, Coppo M, Moroni F, Toscano T, Lucchese G, Gensini GF, et al. Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes 2005; 54:394 - 401; http://dx.doi.org/10.2337/diabetes.54.2.394; PMID: 15677497
  • Godeny MD, Sayyah J, VonDerLinden D, Johns M, Ostrov DA, Caldwell-Busby J, Sayeski PP. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor. Cell Signal 2007; 19:600 - 9; http://dx.doi.org/10.1016/j.cellsig.2006.08.010; PMID: 17027227
  • Duan W, Yang Y, Yi W, Yan J, Liang Z, Wang N, Li Y, Chen W, Yu S, Jin Z, et al. New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PLoS One 2013; 8:e57941; http://dx.doi.org/10.1371/journal.pone.0057941; PMID: 23483946
  • Sandberg EM, Sayeski PP. Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J Biol Chem 2004; 279:34547 - 52; http://dx.doi.org/10.1074/jbc.M405045200; PMID: 15159394
  • Mascareno E, Beckles DL, Siddiqui MA. Janus kinase-2 signaling mediates apoptosis in rat cardiomyocytes. Vascul Pharmacol 2005; 43:327 - 35; http://dx.doi.org/10.1016/j.vph.2005.08.023; PMID: 16269269
  • Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 2007; 133:1637 - 48; http://dx.doi.org/10.1053/j.gastro.2007.08.022; PMID: 17983808
  • Carballo M, Conde M, El Bekay R, Martín-Nieto J, Camacho MJ, Monteseirín J, Conde J, Bedoya FJ, Sobrino F. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem 1999; 274:17580 - 6; http://dx.doi.org/10.1074/jbc.274.25.17580; PMID: 10364193
  • Crump KE, Juneau DG, Poole LB, Haas KM, Grayson JM. The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur J Immunol 2012; 42:2152 - 64; http://dx.doi.org/10.1002/eji.201142289; PMID: 22674013
  • Sayeski PP, Ali MS, Safavi A, Lyles M, Kim SO, Frank SJ, Bernstein KE. A catalytically active Jak2 is required for the angiotensin II-dependent activation of Fyn. J Biol Chem 1999; 274:33131 - 42; http://dx.doi.org/10.1074/jbc.274.46.33131; PMID: 10551884
  • Girasol A, Albuquerque GG, Mansour E, Araújo EP, Degasperi G, Denis RG, Carvalheira JB, Saad MJ, Velloso LA. Fyn mediates leptin actions in the thymus of rodents. PLoS One 2009; 4:e7707; http://dx.doi.org/10.1371/journal.pone.0007707; PMID: 19888448
  • Frank GD, Eguchi S. Activation of tyrosine kinases by reactive oxygen species in vascular smooth muscle cells: significance and involvement of EGF receptor transactivation by angiotensin II. Antioxid Redox Signal 2003; 5:771 - 80; http://dx.doi.org/10.1089/152308603770380070; PMID: 14588150
  • Osherov N, Gazit A, Gilon C, Levitzki A. Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J Biol Chem 1993; 268:11134 - 42; PMID: 8098709
  • Gorina R, Sanfeliu C, Galitó A, Messeguer A, Planas AM. Exposure of glia to pro-oxidant agents revealed selective Stat1 activation by H2O2 and Jak2-independent antioxidant features of the Jak2 inhibitor AG490. Glia 2007; 55:1313 - 24; http://dx.doi.org/10.1002/glia.20542; PMID: 17607690
  • Marty C, Lacout C, Droin N, Le Couédic JP, Ribrag V, Solary E, Vainchenker W, Villeval JL, Plo I. A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia 2013; In press http://dx.doi.org/10.1038/leu.2013.102; PMID: 23558526
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78:547 - 81; PMID: 9562038
  • Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic Biol Med 2012; 52:539 - 55; http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.445; PMID: 22080087
  • Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem 2012; 19:2504 - 20; http://dx.doi.org/10.2174/092986712800493057; PMID: 22489713
  • Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 2003; 108:2034 - 40; http://dx.doi.org/10.1161/01.CIR.0000093661.90582.c4; PMID: 14581381
  • Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, Park BJ, Korean Meta-Analysis Study Group. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 2013; 346:f10; http://dx.doi.org/10.1136/bmj.f10; PMID: 23335472
  • Sugamura K, Keaney JF Jr.. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011; 51:978 - 92; http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.004; PMID: 21627987
  • Kurdi M, Booz GW. JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 2009; 297:H1545 - 56; http://dx.doi.org/10.1152/ajpheart.00032.2009; PMID: 19717737
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107:1058 - 70; http://dx.doi.org/10.1161/CIRCRESAHA.110.223545; PMID: 21030723
  • Fujinaka Y, Takane K, Yamashita H, Vasavada RC. Lactogens promote beta cell survival through JAK2/STAT5 activation and Bcl-XL upregulation. J Biol Chem 2007; 282:30707 - 17; http://dx.doi.org/10.1074/jbc.M702607200; PMID: 17728251
  • Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53:Suppl 1 S119 - 24; http://dx.doi.org/10.2337/diabetes.53.2007.S119; PMID: 14749276
  • Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012; 2012:703538; http://dx.doi.org/10.1155/2012/703538; PMID: 22110477
  • Choi D, Schroer SA, Lu SY, Wang L, Wu X, Liu Y, Zhang Y, Gaisano HY, Wagner KU, Wu H, et al. Erythropoietin protects against diabetes through direct effects on pancreatic beta cells. J Exp Med 2010; 207:2831 - 42; http://dx.doi.org/10.1084/jem.20100665; PMID: 21149549
  • Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, Liu YL. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2004; 287:E405 - 13; http://dx.doi.org/10.1152/ajpendo.00423.2003; PMID: 15138153
  • Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, Kendall W, Oden J, Bridges S, Binart N, et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 2002; 143:1378 - 85; http://dx.doi.org/10.1210/en.143.4.1378; PMID: 11897695
  • Matsui F, Meldrum KK. The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. J Surg Res 2012; 178:339 - 45; http://dx.doi.org/10.1016/j.jss.2012.06.050; PMID: 22883438
  • Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Renal Physiol 2006; 290:F762 - 8; http://dx.doi.org/10.1152/ajprenal.00181.2005; PMID: 16527921
  • Berthier CC, Zhang H, Schin M, Henger A, Nelson RG, Yee B, Boucherot A, Neusser MA, Cohen CD, Carter-Su C, et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 2009; 58:469 - 77; http://dx.doi.org/10.2337/db08-1328; PMID: 19017763
  • Xu X, Sonntag WE. Growth hormone-induced nuclear translocation of Stat-3 decreases with age: modulation by caloric restriction. Am J Physiol 1996; 271:E903 - 9; PMID: 8944679
  • Xu X, Sonntag WE. Moderate caloric restriction prevents the age-related decline in growth hormone receptor signal transduction. J Gerontol A Biol Sci Med Sci 1996; 51:B167 - 74; http://dx.doi.org/10.1093/gerona/51A.2.B167; PMID: 8612101
  • Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol 2007; 211:144 - 56; http://dx.doi.org/10.1002/path.2104; PMID: 17200946
  • O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 2013; 368:161 - 70; http://dx.doi.org/10.1056/NEJMra1202117; PMID: 23301733
  • Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity 2012; 36:515 - 28; http://dx.doi.org/10.1016/j.immuni.2012.03.016; PMID: 22520845
  • O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012; 36:542 - 50; http://dx.doi.org/10.1016/j.immuni.2012.03.014; PMID: 22520847
  • Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 2011; 89:873 - 91; http://dx.doi.org/10.1189/jlb.1010550; PMID: 21233414
  • Mougiakakos D, Johansson CC, Kiessling R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 2009; 113:3542 - 5; http://dx.doi.org/10.1182/blood-2008-09-181040; PMID: 19050306
  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375:497 - 500; http://dx.doi.org/10.1038/375497a0; PMID: 7539892
  • Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Dröge W, Lehmann V. HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 1995; 14:546 - 54; PMID: 7859743
  • Gülow K, Kaminski M, Darvas K, Süss D, Li-Weber M, Krammer PH. HIV-1 trans-activator of transcription substitutes for oxidative signaling in activation-induced T cell death. J Immunol 2005; 174:5249 - 60; PMID: 15843521
  • Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A 1993; 90:7632 - 6; http://dx.doi.org/10.1073/pnas.90.16.7632; PMID: 8395050
  • Ehret A, Westendorp MO, Herr I, Debatin KM, Heeney JL, Frank R, Krammer PH. Resistance of chimpanzee T cells to human immunodeficiency virus type 1 Tat-enhanced oxidative stress and apoptosis. J Virol 1996; 70:6502 - 7; PMID: 8709290
  • Atkuri KR, Herzenberg LA, Herzenberg LA. Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc Natl Acad Sci U S A 2005; 102:3756 - 9; http://dx.doi.org/10.1073/pnas.0409910102; PMID: 15738407
  • Atkuri KR, Herzenberg LA, Niemi AK, Cowan T, Herzenberg LA. Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci U S A 2007; 104:4547 - 52; http://dx.doi.org/10.1073/pnas.0611732104; PMID: 17360561
  • Carswell KS, Weiss JW, Papoutsakis ET. Low oxygen tension enhances the stimulation and proliferation of human T lymphocytes in the presence of IL-2. Cytotherapy 2000; 2:25 - 37; http://dx.doi.org/10.1080/146532400539026; PMID: 12042052
  • Sahaf B, Atkuri K, Heydari K, Malipatlolla M, Rappaport J, Regulier E, Herzenberg LA, Herzenberg LA. Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease. Proc Natl Acad Sci U S A 2008; 105:5111 - 6; http://dx.doi.org/10.1073/pnas.0712363105; PMID: 18364393
  • Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene 2000; 19:2474 - 88; http://dx.doi.org/10.1038/sj.onc.1203527; PMID: 10851046
  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9:798 - 809; http://dx.doi.org/10.1038/nrc2734; PMID: 19851315
  • Sayyah J, Sayeski PP. Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies. Curr Oncol Rep 2009; 11:117 - 24; http://dx.doi.org/10.1007/s11912-009-0018-2; PMID: 19216843
  • Baskin R, Majumder A, Sayeski PP. The recent medicinal chemistry development of Jak2 tyrosine kinase small molecule inhibitors. Curr Med Chem 2010; 17:4551 - 8; http://dx.doi.org/10.2174/092986710794182953; PMID: 21062251
  • Deisseroth A, Kaminskas E, Grillo J, Chen W, Saber H, Lu HL, Rothmann MD, Brar S, Wang J, Garnett C, et al. U.S. Food and Drug Administration approval: ruxolitinib for the treatment of patients with intermediate and high-risk myelofibrosis. Clin Cancer Res 2012; 18:3212 - 7; http://dx.doi.org/10.1158/1078-0432.CCR-12-0653; PMID: 22544377
  • Chase A, Bryant C, Score J, Haferlach C, Grossmann V, Schwaab J, Hofmann WK, Reiter A, Cross NC. Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements. Haematologica 2013; 98:404 - 8; http://dx.doi.org/10.3324/haematol.2012.067959; PMID: 22875628
  • Marit MR, Chohan M, Matthew N, Huang K, Kuntz DA, Rose DR, Barber DL. Random mutagenesis reveals residues of JAK2 critical in evading inhibition by a tyrosine kinase inhibitor. PLoS One 2012; 7:e43437; http://dx.doi.org/10.1371/journal.pone.0043437; PMID: 22916261
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic Biol Med 2010; 49:1603 - 16; http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006; PMID: 20840865
  • Chandra J. Oxidative stress by targeted agents promotes cytotoxicity in hematologic malignancies. Antioxid Redox Signal 2009; 11:1123 - 37; http://dx.doi.org/10.1089/ars.2008.2302; PMID: 19018667
  • Wardman P. The importance of radiation chemistry to radiation and free radical biology (The 2008 Silvanus Thompson Memorial Lecture). Br J Radiol 2009; 82:89 - 104; http://dx.doi.org/10.1259/bjr/60186130; PMID: 19168690
  • Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M, Okamoto T, Yodoi J, Kuwano M, Kohno K. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 1995; 55:4293 - 6; PMID: 7671238
  • Arnold NB, Ketterer K, Kleeff J, Friess H, Büchler MW, Korc M. Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer. Cancer Res 2004; 64:3599 - 606; http://dx.doi.org/10.1158/0008-5472.CAN-03-2999; PMID: 15150118
  • Carmo CR, Lyons-Lewis J, Seckl MJ, Costa-Pereira AP. A novel requirement for Janus kinases as mediators of drug resistance induced by fibroblast growth factor-2 in human cancer cells. PLoS One 2011; 6:e19861; http://dx.doi.org/10.1371/journal.pone.0019861; PMID: 21625473
  • Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci U S A 2004; 101:1714 - 9; http://dx.doi.org/10.1073/pnas.0308102100; PMID: 14755057
  • Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR, Khodarev NN. STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med 2009; 7:68; http://dx.doi.org/10.1186/1741-7015-7-68; PMID: 19891767
  • Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121:2723 - 35; http://dx.doi.org/10.1172/JCI44745; PMID: 21633165
  • Hernandez-Vargas H, Ouzounova M, Le Calvez-Kelm F, Lambert MP, McKay-Chopin S, Tavtigian SV, Puisieux A, Matar C, Herceg Z. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics 2011; 6:428 - 39; http://dx.doi.org/10.4161/epi.6.4.14515; PMID: 21266853
  • Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 2008; 9:R83; http://dx.doi.org/10.1186/gb-2008-9-5-r83; PMID: 18492237
  • Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010; 7:150 - 61; http://dx.doi.org/10.1016/j.stem.2010.07.007; PMID: 20682444
  • Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2006; 107:176 - 83; http://dx.doi.org/10.1182/blood-2005-06-2413; PMID: 16174768
  • Cacalano NA, Sanden D, Johnston JA. Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 2001; 3:460 - 5; http://dx.doi.org/10.1038/35074525; PMID: 11331873