3,619
Views
78
CrossRef citations to date
0
Altmetric
Review

Molecular engineering of antibodies for therapeutic and diagnostic purposes

&
Pages 445-457 | Published online: 01 Jul 2012

References

  • Balint RF, Larrick JW. Antibody engineering by parsimonious mutagenesis. Gene 1993; 137:109 - 18; http://dx.doi.org/10.1016/0378-1119(93)90258-5; PMID: 7506686
  • Sheedy C, MacKenzie CR, Hall JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv 2007; 25:333 - 52; http://dx.doi.org/10.1016/j.biotechadv.2007.02.003; PMID: 17383141
  • Labrou NE. Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 2010; 11:91 - 100; http://dx.doi.org/10.2174/138920310790274617; PMID: 20201809
  • Lewis L, Lloyd C. Optimisation of antibody affinity by ribosome display using error-prone or site-directed mutagenesis. Methods Mol Biol 2012; 805:139 - 61; http://dx.doi.org/10.1007/978-1-61779-379-0_9; PMID: 22094805
  • Volles MJ, Lansbury PT Jr.. A computer program for the estimation of protein and nucleic acid sequence diversity in random point mutagenesis libraries. Nucleic Acids Res 2005; 33:3667 - 77; http://dx.doi.org/10.1093/nar/gki669; PMID: 15990391
  • Arkin MR, Wells JA. Probing the importance of second sphere residues in an esterolytic antibody by phage display. J Mol Biol 1998; 284:1083 - 94; http://dx.doi.org/10.1006/jmbi.1998.2234; PMID: 9837728
  • Boder ET, Midelfort KS, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 2000; 97:10701 - 5; http://dx.doi.org/10.1073/pnas.170297297; PMID: 10984501
  • Löfblom J. Bacterial display in combinatorial protein engineering. Biotechnol J 2011; 6:1115 - 29; http://dx.doi.org/10.1002/biot.201100129; PMID: 21786423
  • Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290:51 - 67; http://dx.doi.org/10.1016/j.jim.2004.04.008; PMID: 15261571
  • Pelat T, Hust M, Thullier P. Obtention and engineering of non-human primate (NHP) antibodies for therapeutics. Mini Rev Med Chem 2009; 9:1633 - 8; http://dx.doi.org/10.2174/138955709791012283; PMID: 20105119
  • Thullier P, Chahboun S, Pelat T. A comparison of human and macaque (Macaca mulatta) immunoglobulin germline V regions and its applications for antibody engineering. MAbs 2010; 5:528 - 38; http://dx.doi.org/10.4161/mabs.2.5.12545
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256:495 - 7; http://dx.doi.org/10.1038/256495a0; PMID: 1172191
  • Wu AHB. A selected history and future of immunoassay development and applications in clinical chemistry. Clin Chim Acta 2006; 369:119 - 24; http://dx.doi.org/10.1016/j.cca.2006.02.045; PMID: 16701599
  • Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs 2011; 3:76 - 99; http://dx.doi.org/10.4161/mabs.3.1.13895; PMID: 21051951
  • Klee GG. Human anti-mouse antibodies. Arch Pathol Lab Med 2000; 124:921 - 3; PMID: 10835540
  • Baca M, Presta LG, O’Connor SJ, Wells JA. Antibody humanization using monovalent phage display. J Biol Chem 1997; 272:10678 - 84; http://dx.doi.org/10.1074/jbc.272.16.10678; PMID: 9099717
  • Schlapschy M, Gruber H, Gresch O, Schäfer C, Renner C, Pfreundschuh M, et al. Functional humanization of an anti-CD30 Fab fragment for the immunotherapy of Hodgkin’s lymphoma using an in vitro evolution approach. Protein Eng Des Sel 2004; 17:847 - 60; http://dx.doi.org/10.1093/protein/gzh098; PMID: 15708864
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23:1105 - 16; http://dx.doi.org/10.1038/nbt1126; PMID: 16151404
  • Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol 2005; 23:1117 - 25; http://dx.doi.org/10.1038/nbt1135; PMID: 16151405
  • Van Walle I, Gansemans Y, Parren PW, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther 2007; 7:405 - 18; http://dx.doi.org/10.1517/14712598.7.3.405; PMID: 17309332
  • Schellekens H. How to predict and prevent the immunogenicity of therapeutic proteins. Biotechnol Annu Rev 2008; 14:191 - 202; http://dx.doi.org/10.1016/S1387-2656(08)00007-0; PMID: 18606364
  • De Groot AS, McMurry J, Moise L. Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 2008; 8:620 - 6; http://dx.doi.org/10.1016/j.coph.2008.08.002; PMID: 18775515
  • Holgate RG, Baker MP. Circumventing immunogenicity in the development of therapeutic antibodies. IDrugs 2009; 12:233 - 7; PMID: 19350467
  • Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2010; 2:256 - 65; http://dx.doi.org/10.4161/mabs.2.3.11641; PMID: 20400861
  • Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev 2009; 61:965 - 76; http://dx.doi.org/10.1016/j.addr.2009.07.001; PMID: 19619593
  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 1984; 81:6851 - 5; http://dx.doi.org/10.1073/pnas.81.21.6851; PMID: 6436822
  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321:522 - 5; http://dx.doi.org/10.1038/321522a0; PMID: 3713831
  • Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC Jr.. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 1985; 45:879 - 85; PMID: 3871353
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods 2005; 36:3 - 10; http://dx.doi.org/10.1016/j.ymeth.2005.01.001; PMID: 15848070
  • Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci U S A 1994; 91:969 - 73; http://dx.doi.org/10.1073/pnas.91.3.969; PMID: 8302875
  • Graff CP, Chester K, Begent R, Wittrup KD. Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 2004; 17:293 - 304; http://dx.doi.org/10.1093/protein/gzh038; PMID: 15115853
  • Tamura M, Milenic DE, Iwahashi M, Padlan E, Schlom J, Kashmiri SV. Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 2000; 164:1432 - 41; PMID: 10640759
  • Gonzales NR, Padlan EA, De Pascalis R, Schuck P, Schlom J, Kashmiri SV. SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Mol Immunol 2004; 41:863 - 72; http://dx.doi.org/10.1016/j.molimm.2004.03.041; PMID: 15261458
  • Kashmiri SV, De Pascalis R, Gonzales NR, Schlom J. SDR grafting--a new approach to antibody humanization. Methods 2005; 36:25 - 34; http://dx.doi.org/10.1016/j.ymeth.2005.01.003; PMID: 15848072
  • Dall’Acqua WF, Damschroder MM, Zhang J, Woods RM, Widjaja L, Yu J, et al. Antibody humanization by framework shuffling. Methods 2005; 36:43 - 60; http://dx.doi.org/10.1016/j.ymeth.2005.01.005; PMID: 15848074
  • Damschroder MM, Widjaja L, Gill PS, Krasnoperov V, Jiang W, Dall’Acqua WF, et al. Framework shuffling of antibodies to reduce immunogenicity and manipulate functional and biophysical properties. Mol Immunol 2007; 44:3049 - 60; http://dx.doi.org/10.1016/j.molimm.2006.12.019; PMID: 17241664
  • Lazar GA, Desjarlais JR, Jacinto J, Karki S, Hammond PW. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 2007; 44:1986 - 98; http://dx.doi.org/10.1016/j.molimm.2006.09.029; PMID: 17079018
  • Hwang WY, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005; 36:35 - 42; http://dx.doi.org/10.1016/j.ymeth.2005.01.004; PMID: 15848073
  • Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989; 246:1275 - 81; http://dx.doi.org/10.1126/science.2531466; PMID: 2531466
  • Rosok MJ, Yelton DE, Harris LJ, Bajorath J, Hellström KE, Hellström I, et al. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J Biol Chem 1996; 271:22611 - 8; http://dx.doi.org/10.1074/jbc.271.37.22611; PMID: 8798431
  • Rader C, Cheresh DA, Barbas CF 3rd. A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc Natl Acad Sci U S A 1998; 95:8910 - 5; http://dx.doi.org/10.1073/pnas.95.15.8910; PMID: 9671778
  • Bernett MJ, Karki S, Moore GL, Leung IW, Chen H, Pong E, et al. Engineering fully human monoclonal antibodies from murine variable regions. J Mol Biol 2010; 396:1474 - 90; http://dx.doi.org/10.1016/j.jmb.2009.12.046; PMID: 20045416
  • De Groot AS, Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr Opin Drug Discov Devel 2007; 10:332 - 40; PMID: 17554860
  • Bender NK, Heilig CE, Dröll B, Wohlgemuth J, Armbruster FP, Heilig B. Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol Int 2007; 27:269 - 74; http://dx.doi.org/10.1007/s00296-006-0183-7; PMID: 17006705
  • West RL, Zelinkova Z, Wolbink GJ, Kuipers EJ, Stokkers PC, van der Woude CJ. Immunogenicity negatively influences the outcome of adalimumab treatment in Crohn’s disease. Aliment Pharmacol Ther 2008; 28:1122 - 6; http://dx.doi.org/10.1111/j.1365-2036.2008.03828.x; PMID: 18691349
  • Inman RD, Davis JC Jr., Heijde D, Diekman L, Sieper J, Kim SI, et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum 2008; 58:3402 - 12; http://dx.doi.org/10.1002/art.23969; PMID: 18975305
  • Hulmes JD, Hantash J, Snow M, O’Dell M, Bowsher RR, Kirman I. Immunogenicity assessment of humanized deimmunized therapeutic monoclonal antibody ETI-204 (Anthin®) in phase I clinical study with a validated electrochemiluminescence immunoassay. AAPS Biotechnology Conference, 2010; May 16-19, San Francisco CA, USA.
  • Henry MD, Wen S, Silva MD, Chandra S, Milton M, Worland PJ. A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 2004; 64:7995 - 8001; http://dx.doi.org/10.1158/0008-5472.CAN-04-1722; PMID: 15520207
  • Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003; 9:129 - 34; http://dx.doi.org/10.1038/nm0103-129; PMID: 12514726
  • Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 2011; 317:1261 - 9; http://dx.doi.org/10.1016/j.yexcr.2011.02.013; PMID: 21371474
  • Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs 2011; 3:243 - 52; http://dx.doi.org/10.4161/mabs.3.3.15234; PMID: 21406966
  • Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJM, et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006; 15:949 - 60; http://dx.doi.org/10.1110/ps.052030506; PMID: 16597831
  • Riechmann L, Weill M. Phage display and selection of a site-directed randomized single-chain antibody Fv fragment for its affinity improvement. Biochemistry 1993; 32:8848 - 55; http://dx.doi.org/10.1021/bi00085a016; PMID: 8364031
  • Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A 1995; 92:1254 - 6; http://dx.doi.org/10.1073/pnas.92.5.1254; PMID: 7877964
  • Batista FD, Neuberger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 1998; 8:751 - 9; http://dx.doi.org/10.1016/S1074-7613(00)80580-4; PMID: 9655489
  • Kobayashi N, Oyama H. Antibody engineering toward high-sensitive high-throughput immunosensing of small molecules. Analyst (Lond) 2011; 136:642 - 51; http://dx.doi.org/10.1039/c0an00603c
  • Dubreuil O, Bossus M, Graille M, Bilous M, Savatier A, Jolivet M, et al. Fine tuning of the specificity of an anti-progesterone antibody by first and second sphere residue engineering. J Biol Chem 2005; 280:24880 - 7; http://dx.doi.org/10.1074/jbc.M500048200; PMID: 15878862
  • Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 2009; 24:155 - 61; http://dx.doi.org/10.1089/cbr.2009.0627; PMID: 19409036
  • Graff CP, Wittrup KD. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res 2003; 63:1288 - 96; PMID: 12649189
  • Zahnd C, Spinelli S, Luginbühl B, Amstutz P, Cambillau C, Plückthun A. Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem 2004; 279:18870 - 7; http://dx.doi.org/10.1074/jbc.M309169200; PMID: 14754898
  • Beers R, Chowdhury P, Bigner D, Pastan I. Immunotoxins with increased activity against epidermal growth factor receptor vIII-expressing cells produced by antibody phage display. Clin Cancer Res 2000; 6:2835 - 43; PMID: 10914732
  • Ho M, Kreitman RJ, Onda M, Pastan I. In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J Biol Chem 2005; 280:607 - 17; PMID: 15491997
  • Yau KY, Dubuc G, Li S, Hirama T, Mackenzie CR, Jermutus L, et al. Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods 2005; 297:213 - 24; http://dx.doi.org/10.1016/j.jim.2004.12.005; PMID: 15777944
  • Johannes TW, Woodyer RD, Zhao H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol 2005; 71:5728 - 34; http://dx.doi.org/10.1128/AEM.71.10.5728-5734.2005; PMID: 16204481
  • Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro.. Nat Biotechnol 1999; 17:568 - 72; http://dx.doi.org/10.1038/9872; PMID: 10385321
  • Neuberger MS, Milstein C. Somatic hypermutation. Curr Opin Immunol 1995; 7:248 - 54; http://dx.doi.org/10.1016/0952-7915(95)80010-7; PMID: 7546385
  • Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 2002; 8:995 - 1002; PMID: 11948105
  • Muller BH, Savatier A, L’Hostis G, Costa N, Bossus M, Michel S, et al. In vitro affinity maturation of an anti-PSA antibody for prostate cancer diagnostic assay. J Mol Biol 2011; 414:545 - 62; http://dx.doi.org/10.1016/j.jmb.2011.10.008; PMID: 22019475
  • Stura EA, Muller BH, Bossus M, Michel S, Jolivet-Reynaud C, Ducancel F. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. J Mol Biol 2011; 414:530 - 44; http://dx.doi.org/10.1016/j.jmb.2011.10.007; PMID: 22037582
  • Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 2005; 102:8466 - 71; http://dx.doi.org/10.1073/pnas.0503543102; PMID: 15939870
  • Laffly E, Pelat T, Cédrone F, Blésa S, Bedouelle H, Thullier P. Improvement of an antibody neutralizing the anthrax toxin by simultaneous mutagenesis of its six hypervariable loops. J Mol Biol 2008; 378:1094 - 103; http://dx.doi.org/10.1016/j.jmb.2008.03.045; PMID: 18423488
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007; 25:1171 - 6; http://dx.doi.org/10.1038/nbt1336; PMID: 17891135
  • Lippow SM, Tidor B. Progress in computational protein design. Curr Opin Biotechnol 2007; 18:305 - 11; http://dx.doi.org/10.1016/j.copbio.2007.04.009; PMID: 17644370
  • Chames P, Coulon S, Baty D. Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display. J Immunol 1998; 161:5421 - 9; PMID: 9820517
  • Lamminmäki U, Westerlund-Karlsson A, Toivola M, Saviranta P. Modulating the binding properties of an anti-17β-estradiol antibody by systematic mutation combinations. Protein Sci 2003; 12:2549 - 58; http://dx.doi.org/10.1110/ps.0353903; PMID: 14573866
  • Korpimäki T, Rosenberg J, Virtanen P, Lamminmäki U, Tuomola M, Saviranta P. Further improvement of broad specificity hapten recognition with protein engineering. Protein Eng 2003; 16:37 - 46; http://dx.doi.org/10.1093/proeng/gzg010; PMID: 12646691
  • Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A, Lou J, et al. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 2007; 25:107 - 16; http://dx.doi.org/10.1038/nbt1269; PMID: 17173035
  • Farady CJ, Sellers BD, Jacobson MP, Craik CS. Improving the species cross-reactivity of an antibody using computational design. Bioorg Med Chem Lett 2009; 19:3744 - 7; http://dx.doi.org/10.1016/j.bmcl.2009.05.005; PMID: 19477127
  • Demarest SJ, Glaser SM. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 2008; 11:675 - 87; PMID: 18729019
  • Honegger A. Engineering antibodies for stability and efficient folding. Handb exp Pharmacol 2008; 181:47-68.
  • Kügler M, Stein C, Schwenkert M, Saul D, Vockentanz L, Huber T, et al. Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework. Protein Eng Des Sel 2009; 22:135 - 47; http://dx.doi.org/10.1093/protein/gzn079; PMID: 19188138
  • Nieba L, Honegger A, Krebber C, Plückthun A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng 1997; 10:435 - 44; http://dx.doi.org/10.1093/protein/10.4.435; PMID: 9194169
  • Ewert S, Honegger A, Plückthun A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 2004; 34:184 - 99; http://dx.doi.org/10.1016/j.ymeth.2004.04.007; PMID: 15312672
  • Ewert S, Honegger A, Plückthun A. Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalizable approach. Biochemistry 2003; 42:1517 - 28; http://dx.doi.org/10.1021/bi026448p; PMID: 12578364
  • Honegger A, Malebranche AD, Röthlisberger D, Plückthun A. The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng Des Sel 2009; 22:121 - 34; http://dx.doi.org/10.1093/protein/gzn077; PMID: 19136675
  • Wörn A, Auf der Maur A, Escher D, Honegger A, Barberis A, Plückthun A. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem 2000; 275:2795 - 803; http://dx.doi.org/10.1074/jbc.275.4.2795; PMID: 10644744
  • Jung S, Honegger A, Plückthun A. Selection for improved protein stability by phage display. J Mol Biol 1999; 294:163 - 80; http://dx.doi.org/10.1006/jmbi.1999.3196; PMID: 10556036
  • Brockmann EC, Cooper M, Strömsten N, Vehniäinen M, Saviranta P. Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 2005; 296:159 - 70; http://dx.doi.org/10.1016/j.jim.2004.11.008; PMID: 15680160
  • Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, et al. Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel 2010; 23:549 - 57; http://dx.doi.org/10.1093/protein/gzq028; PMID: 20457695
  • Perchiacca JM, Bhattacharya M, Tessier PM. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Proteins 2011; 79:2637 - 47; http://dx.doi.org/10.1002/prot.23085; PMID: 21732420
  • Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL. Aggregation-prone motifs in human immunoglobulin G. J Mol Biol 2009; 391:404 - 13; http://dx.doi.org/10.1016/j.jmb.2009.06.028; PMID: 19527731
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 2010; 23:385 - 92; http://dx.doi.org/10.1093/protein/gzq009; PMID: 20159773
  • Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 2010; 28:1203 - 7; http://dx.doi.org/10.1038/nbt.1691; PMID: 20953198
  • Adachi M, Kurihara Y, Nojima H, Takeda-Shitaka M, Kamiya K, Umeyama H. Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL-HyHEL-10 complex. Protein Sci 2003; 12:2125 - 31; http://dx.doi.org/10.1110/ps.03100803; PMID: 14500870
  • Röthlisberger D, Honegger A, Plückthun A. Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 2005; 347:773 - 89; http://dx.doi.org/10.1016/j.jmb.2005.01.053; PMID: 15769469
  • Qu Z, Sharkey RM, Hansen HJ, Goldenberg DM, Leung S. Structure determination of N-linked oligosaccharides engineered at the CH1 domain of humanized LL2. Glycobiology 1997; 7:803 - 9; http://dx.doi.org/10.1093/glycob/7.6.803; PMID: 9376682
  • Qu Z, Sharkey RM, Hansen HJ, Shih LB, Govindan SV, Shen J, et al. Carbohydrates engineered at antibody constant domains can be used for site-specific conjugation of drugs and chelates. J Immunol Methods 1998; 213:131 - 44; http://dx.doi.org/10.1016/S0022-1759(97)00192-0; PMID: 9692846
  • Teerinen T, Valjakka J, Rouvinen J, Takkinen K. Structure-based stability engineering of the mouse IgG1 Fab fragment by modifying constant domains. J Mol Biol 2006; 361:687 - 97; http://dx.doi.org/10.1016/j.jmb.2006.06.073; PMID: 16876195
  • Daëron M. Fc receptor biology. Annu Rev Immunol 1997; 15:203 - 34; http://dx.doi.org/10.1146/annurev.immunol.15.1.203; PMID: 9143687
  • Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19:275 - 90; http://dx.doi.org/10.1146/annurev.immunol.19.1.275; PMID: 11244038
  • Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 2009; 113:3716 - 25; http://dx.doi.org/10.1182/blood-2008-09-179754; PMID: 19018092
  • Basta M. Ambivalent effect of immunoglobulins on the complement system: activation versus inhibition. Mol Immunol 2008; 45:4073 - 9; http://dx.doi.org/10.1016/j.molimm.2008.07.012; PMID: 18706699
  • Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies. Immunol Rev 2008; 222:9 - 27; http://dx.doi.org/10.1111/j.1600-065X.2008.00601.x; PMID: 18363992
  • Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 2009; 20:685 - 91; http://dx.doi.org/10.1016/j.copbio.2009.10.011; PMID: 19896358
  • Jeong KJ, Jang SH, Velmurugan N. Recombinant antibodies: engineering and production in yeast and bacterial hosts. Biotechnol J 2011; 6:16 - 27; http://dx.doi.org/10.1002/biot.201000381; PMID: 21170983
  • Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 2000; 406:267 - 73; http://dx.doi.org/10.1038/35018508; PMID: 10917521
  • Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc γ RI, Fc γ RII, Fc γ RIII, and FcRn and design of IgG1 variants with improved binding to the Fc γ R. J Biol Chem 2001; 276:6591 - 604; http://dx.doi.org/10.1074/jbc.M009483200; PMID: 11096108
  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 2006; 103:4005 - 10; http://dx.doi.org/10.1073/pnas.0508123103; PMID: 16537476
  • Sibéril S, Ménez R, Jorieux S, de Romeuf C, Bourel D, Fridman WH, et al. Effect of zinc on human IgG1 and its FcγR interactions. Immunol Lett 2012; 143:60 - 9; http://dx.doi.org/10.1016/j.imlet.2012.02.002; PMID: 22553781
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004; 93:2645 - 68; http://dx.doi.org/10.1002/jps.20178; PMID: 15389672
  • Martin WL, West AP Jr., Gan L, Bjorkman PJ. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 2001; 7:867 - 77; http://dx.doi.org/10.1016/S1097-2765(01)00230-1; PMID: 11336709
  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 2006; 18:1759 - 69; http://dx.doi.org/10.1093/intimm/dxl110; PMID: 17077181
  • Dall’Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 2006; 281:23514 - 24; http://dx.doi.org/10.1074/jbc.M604292200; PMID: 16793771
  • Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall’acqua WF. Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol Immunol 2009; 46:1750 - 5; http://dx.doi.org/10.1016/j.molimm.2009.01.026; PMID: 19250681
  • Pop LM, Liu X, Ghetie V, Vitetta ES. The generation of immunotoxins using chimeric anti-CD22 antibodies containing mutations which alter their serum half-life. Int Immunopharmacol 2005; 5:1279 - 90; http://dx.doi.org/10.1016/j.intimp.2005.03.013; PMID: 15914332
  • Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005; 65:622 - 31; PMID: 15695407
  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ, Wroblewski VJ. Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem 2007; 282:1709 - 17; http://dx.doi.org/10.1074/jbc.M607161200; PMID: 17135257
  • Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 2008; 105:20167 - 72; http://dx.doi.org/10.1073/pnas.0809257105; PMID: 19074274
  • Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, et al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumour cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA •••; 201:604 - 9
  • Jung ST, Kang TH, Kelton W, Georgiou G. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 2011; 22:1 - 10; http://dx.doi.org/10.1016/j.copbio.2011.03.002; PMID: 21190838
  • Makino T, Skretas G, Kang TH, Georgiou G. Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies. Metab Eng 2011; 13:241 - 51; http://dx.doi.org/10.1016/j.ymben.2010.11.002; PMID: 21130896
  • Traxlmayr MW, Faissner M, Stadlmayr G, Hasenhindl C, Antes B, Rüker F, et al. Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 2012; 1824:542-9.
  • Wozniak-Knopp G, Stadlmann J, Rüker F. Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds. PLoS One 2012; 7:e30083; http://dx.doi.org/10.1371/journal.pone.0030083; PMID: 22272277
  • Wozniak-Knopp G, Bartl S, Bauer A, Mostageer M, Woisetschläger M, Antes B, et al. Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 2010; 23:289 - 97; http://dx.doi.org/10.1093/protein/gzq005; PMID: 20150180
  • Traxlmayr MW, Wozniak-Knopp G, Antes B, Stadlmayr G, Rüker F, Obinger C. Integrin binding human antibody constant domains--probing the C-terminal structural loops for grafting the RGD motif. J Biotechnol 2011; 155:193 - 202; http://dx.doi.org/10.1016/j.jbiotec.2011.06.042; PMID: 21771617
  • Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol 2009; 27:331 - 7; http://dx.doi.org/10.1038/nbt0409-331; PMID: 19352366
  • Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM. Domain antibodies: proteins for therapy. Trends Biotechnol 2003; 21:484 - 90; http://dx.doi.org/10.1016/j.tibtech.2003.08.007; PMID: 14573361
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23:1126 - 36; http://dx.doi.org/10.1038/nbt1142; PMID: 16151406
  • Weiner LM, Carter P. Tunable antibodies. Nat Biotechnol 2005; 23:556 - 7; http://dx.doi.org/10.1038/nbt0505-556; PMID: 15877072
  • Romer T, Leonhardt H, Rothbauer U. Engineering antibodies and proteins for molecular in vivo imaging. Curr Opin Biotechnol 2011; 22:882 - 7; http://dx.doi.org/10.1016/j.copbio.2011.06.007; PMID: 21708456
  • Vaneycken I, D’huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, et al. Immuno-imaging using nanobodies. Curr Opin Biotechnol 2011; 22:1 - 5; http://dx.doi.org/10.1016/j.copbio.2011.06.009; PMID: 21190838
  • Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med 2010; 40:167 - 81; http://dx.doi.org/10.1053/j.semnuclmed.2009.12.005; PMID: 20350626
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23:1137 - 46; http://dx.doi.org/10.1038/nbt1141; PMID: 16151407
  • Beck A, Wagner-Rousset E, Wurch T, Corvaia N. [Therapeutic antibodies and related products: choosing the right structure for success]. Med Sci (Paris) 2009; 25:1024 - 32; http://dx.doi.org/10.1051/medsci/200925121024; PMID: 20035674

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.