2,576
Views
15
CrossRef citations to date
0
Altmetric
Report

Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

, , , , , , , , , , , , , , & show all
Pages 418-431 | Received 24 Jan 2013, Accepted 13 Mar 2013, Published online: 08 Apr 2013

References

  • Orfila C, Rakotoarivony J, Manuel Y, Suc JM. Immunofluorescence characterization of light chains in human nephropathies. Virchows Arch A Pathol Anat Histopathol 1988; 412:591 - 4; http://dx.doi.org/10.1007/BF00844295; PMID: 3129870
  • Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24:1241 - 52; http://dx.doi.org/10.1038/nbt1252; PMID: 17033665
  • Schneider CK, Kalinke U. Toward biosimilar monoclonal antibodies. Nat Biotechnol 2008; 26:985 - 90; http://dx.doi.org/10.1038/nbt0908-985; PMID: 18779806
  • Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007; 6:349 - 56; http://dx.doi.org/10.1038/nrd2241; PMID: 17431406
  • Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol 2009; 27:331 - 7; http://dx.doi.org/10.1038/nbt0409-331; PMID: 19352366
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 2009; 8:226 - 34; http://dx.doi.org/10.1038/nrd2804; PMID: 19247305
  • Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006; 6:343 - 57; http://dx.doi.org/10.1038/nri1837; PMID: 16622479
  • Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010; 10:345 - 52; http://dx.doi.org/10.1038/nri2747; PMID: 20414207
  • Reichert JM. Marketed therapeutic antibodies compendium. MAbs 2012; 4:413 - 5; http://dx.doi.org/10.4161/mabs.19931; PMID: 22531442
  • http://www.immunologylink.com/FDA-APP-Abs.html. 2011.
  • Woloschak GE, Krco CJ. Regulation of kappa/lambda immunoglobulin light chain expression in normal murine lymphocytes. Mol Immunol 1987; 24:751 - 7; http://dx.doi.org/10.1016/0161-5890(87)90058-7; PMID: 3116408
  • Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003; 63:8912 - 21; PMID: 14695208
  • Stohl W, Hilbert DM. The discovery and development of belimumab: the anti-BLyS-lupus connection. Nat Biotechnol 2012; 30:69 - 77; http://dx.doi.org/10.1038/nbt.2076; PMID: 22231104
  • Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal Chem 2010; 82:5219 - 26; http://dx.doi.org/10.1021/ac100575n; PMID: 20491447
  • Montaño RF, Morrison SL. Influence of the isotype of the light chain on the properties of IgG. J Immunol 2002; 168:224 - 31; PMID: 11751966
  • Li XQ, Zhang T, Donnelly D. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family. PLoS One 2011; 6:e18615; http://dx.doi.org/10.1371/journal.pone.0018615; PMID: 21494600
  • Grey HM. Presence of L-L interchain disulfide bonds in reconstituted gamma G molecules. J Immunol 1969; 102:848 - 51; PMID: 5768193
  • Labrijn AF, Buijsse AO, van den Bremer ET, Verwilligen AY, Bleeker WK, Thorpe SJ, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009; 27:767 - 71; http://dx.doi.org/10.1038/nbt.1553; PMID: 19620983
  • Schuurman J, Perdok GJ, Gorter AD, Aalberse RC. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 2001; 38:1 - 8; http://dx.doi.org/10.1016/S0161-5890(01)00050-5; PMID: 11483205
  • Guo A, Han M, Martinez T, Ketchem RR, Novick S, Jochheim C, et al. Electrophoretic evidence for the presence of structural isoforms specific for the IgG2 isotype. Electrophoresis 2008; 29:2550 - 6; http://dx.doi.org/10.1002/elps.200800083; PMID: 18494039
  • Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 2008; 283:16194 - 205; http://dx.doi.org/10.1074/jbc.M709987200; PMID: 18339624
  • Martinez T, Guo A, Allen MJ, Han M, Pace D, Jones J, et al. Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 2008; 47:7496 - 508; http://dx.doi.org/10.1021/bi800576c; PMID: 18549248
  • Zhang B, Harder AG, Connelly HM, Maheu LL, Cockrill SL. Determination of Fab-hinge disulfide connectivity in structural isoforms of a recombinant human immunoglobulin G2 antibody. Anal Chem 2010; 82:1090 - 9; http://dx.doi.org/10.1021/ac902466z; PMID: 20039682
  • Brych SR, Gokarn YR, Hultgen H, Stevenson RJ, Rajan R, Matsumura M. Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation. J Pharm Sci 2010; 99:764 - 81; PMID: 19691118
  • Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci 2009; 98:3013 - 30; http://dx.doi.org/10.1002/jps.21514; PMID: 18680168
  • Natvig JB, Kunkel HG. Human immunoglobulins: classes, subclasses, genetic variants, and idiotypes. Adv Immunol 1973; 16:1 - 59; http://dx.doi.org/10.1016/S0065-2776(08)60295-3; PMID: 4125921
  • Liu H, Zhong S, Chumsae C, Radziejewski C, Hsieh CM. Effect of the light chain C-terminal serine residue on disulfide bond susceptibility of human immunoglobulin G1λ. Anal Biochem 2011; 408:277 - 83; http://dx.doi.org/10.1016/j.ab.2010.09.025; PMID: 20869344
  • Yan B, Boyd D, Kaschak T, Tsukuda J, Shen A, Lin Y, et al. Engineering upper hinge improves stability and effector function of a human IgG1. J Biol Chem 2012; 287:5891 - 7; http://dx.doi.org/10.1074/jbc.M111.311811; PMID: 22203673
  • Debler EW, Ito S, Seebeck FP, Heine A, Hilvert D, Wilson IA. Structural origins of efficient proton abstraction from carbon by a catalytic antibody. Proc Natl Acad Sci U S A 2005; 102:4984 - 9; http://dx.doi.org/10.1073/pnas.0409207102; PMID: 15788533
  • Lewis AP, Lemon SM, Barber KA, Murphy P, Parry NR, Peakman TC, et al. Rescue, expression, and analysis of a neutralizing human anti-hepatitis A virus monoclonal antibody. J Immunol 1993; 151:2829 - 38; PMID: 8395549
  • Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 2006; 281:15829 - 36; http://dx.doi.org/10.1074/jbc.M600697200; PMID: 16597622
  • Faber C, Shan L, Fan Z, Guddat LW, Furebring C, Ohlin M, et al. Three-dimensional structure of a human Fab with high affinity for tetanus toxoid. Immunotechnology 1998; 3:253 - 70; http://dx.doi.org/10.1016/S1380-2933(97)10003-3; PMID: 9530559
  • Malia TJ, Obmolova G, Almagro JC, Gilliland GL, Teplyakov A. Crystal structure of human germline antibody 3-23/B3. Mol Immunol 2011; 48:1586 - 8; http://dx.doi.org/10.1016/j.molimm.2011.04.020; PMID: 21605907
  • Wong JW, Hogg PJ. Analysis of disulfide bonds in protein structures. J Thromb Haemost 2010; http://dx.doi.org/10.1111/j.1538-7836.2010.03894.x; PMID: 20456749
  • Kuang Z, Yao S, Xu Y, Lewis RS, Low A, Masters SL, et al. SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding. J Mol Biol 2009; 386:662 - 74; http://dx.doi.org/10.1016/j.jmb.2008.12.078; PMID: 19154741
  • Schmidt B, Hogg PJ. Search for allosteric disulfide bonds in NMR structures. BMC Struct Biol 2007; 7:49; http://dx.doi.org/10.1186/1472-6807-7-49; PMID: 17640393
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66:486 - 501; http://dx.doi.org/10.1107/S0907444910007493; PMID: 20383002
  • The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.
  • Harris TK, Turner GJ. Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life 2002; 53:85 - 98; http://dx.doi.org/10.1080/15216540211468; PMID: 12049200
  • Kellner R, Mermet J-M, Otto M, Widmer HM, eds. Analytical Chemistry. Weinheim, NY: Wiley-VCH, 1998.
  • Dall’Acqua WF, Cook KE, Damschroder MM, Woods RM, Wu H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol 2006; 177:1129 - 38; PMID: 16818770
  • Dorai H, Wesolowski JS, Gillies SD. Role of inter-heavy and light chain disulfide bonds in the effector functions of human immunoglobulin IgG1. Mol Immunol 1992; 29:1487 - 91; http://dx.doi.org/10.1016/0161-5890(92)90222-J; PMID: 1454066
  • Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, Frangioni JV, et al. A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 2010; 23:221 - 8; http://dx.doi.org/10.1093/protein/gzp077; PMID: 20019028
  • Spangler JB, Manzari MT, Rosalia EK, Chen TF, Wittrup KD. Triepitopic antibody fusions inhibit cetuximab-resistant BRAF and KRAS mutant tumors via EGFR signal repression. J Mol Biol 2012; 422:532 - 44; http://dx.doi.org/10.1016/j.jmb.2012.06.014; PMID: 22706026
  • Hendershot LM. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J Cell Biol 1990; 111:829 - 37; http://dx.doi.org/10.1083/jcb.111.3.829; PMID: 2118144
  • Reddy P, Sparvoli A, Fagioli C, Fassina G, Sitia R. Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains. EMBO J 1996; 15:2077 - 85; PMID: 8641273
  • Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 1994; 372:379 - 83; http://dx.doi.org/10.1038/372379a0; PMID: 7969498
  • Dall’Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 2006; 281:23514 - 24; http://dx.doi.org/10.1074/jbc.M604292200; PMID: 16793771
  • Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 2002; 169:5171 - 80; PMID: 12391234
  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 2006; 18:1759 - 69; http://dx.doi.org/10.1093/intimm/dxl110; PMID: 17077181
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403 - 10; PMID: 2231712
  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr., Brice MD, Rodgers JR, et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 1978; 185:584 - 91; http://dx.doi.org/10.1016/0003-9861(78)90204-7; PMID: 626512
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947 - 8; http://dx.doi.org/10.1093/bioinformatics/btm404; PMID: 17846036
  • Holm L, Park J. DaliLite workbench for protein structure comparison. Bioinformatics 2000; 16:566 - 7; http://dx.doi.org/10.1093/bioinformatics/16.6.566; PMID: 10980157