2,488
Views
52
CrossRef citations to date
0
Altmetric
Report

Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule

, , , &
Pages 432-444 | Received 03 Jan 2013, Accepted 26 Mar 2013, Published online: 22 Apr 2013

References

  • Reichert JM. Which are the antibodies to watch in 2012?. MAbs 2012; 4:1 - 3; http://dx.doi.org/10.4161/mabs.4.1.18719; PMID: 22327425
  • Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs 2011; 3:76 - 99; http://dx.doi.org/10.4161/mabs.3.1.13895; PMID: 21051951
  • Reichert JM. Antibodies to watch in 2010. MAbs 2010; 2:84 - 100; http://dx.doi.org/10.4161/mabs.2.1.10677; PMID: 20065640
  • Dhimolea E, Reichert JM. World Bispecific Antibody Summit, September 27-28, 2011, Boston, MA. MAbs 2012; 4:4 - 13; http://dx.doi.org/10.4161/mabs.4.1.18821; PMID: 22327426
  • Correia IR. Stability of IgG isotypes in serum. MAbs 2010; 2:221 - 32; http://dx.doi.org/10.4161/mabs.2.3.11788; PMID: 20404539
  • Robinson NE, Robinson AB. Molecular clocks. Proc Natl Acad Sci U S A 2001; 98:944 - 9; http://dx.doi.org/10.1073/pnas.98.3.944; PMID: 11158575
  • Robinson NE, Robinson AB. Deamidation of human proteins. Proc Natl Acad Sci U S A 2001; 98:12409 - 13; http://dx.doi.org/10.1073/pnas.221463198; PMID: 11606750
  • Robinson NE. Protein deamidation. Proc Natl Acad Sci U S A 2002; 99:5283 - 8; http://dx.doi.org/10.1073/pnas.082102799; PMID: 11959979
  • Sreedhara A, Cordoba A, Zhu Q, Kwong J, Liu J. Characterization of the isomerization products of aspartate residues at two different sites in a monoclonal antibody. Pharm Res 2012; 29:187 - 97; http://dx.doi.org/10.1007/s11095-011-0534-2; PMID: 21809161
  • Zhang J, Yip H, Katta V. Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal Biochem 2011; 410:234 - 43; http://dx.doi.org/10.1016/j.ab.2010.11.040; PMID: 21130067
  • Cournoyer JJ, Pittman JL, Ivleva VB, Fallows E, Waskell L, Costello CE, et al. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci 2005; 14:452 - 63; http://dx.doi.org/10.1110/ps.041062905; PMID: 15659375
  • Cournoyer J, O’Connor P. Analysis of Deamidation in Proteins Comprehensive Analytical Chemistry. 2008 52:375-410
  • Stephenson RC, Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 1989; 264:6164 - 70; PMID: 2703484
  • Radkiewicz JL, Zipse H, Clarke S, Houk KN. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity. J Am Chem Soc 2001; 123:3499 - 506; http://dx.doi.org/10.1021/ja0026814; PMID: 11472122
  • Oliyai C, Patel JP, Carr L, Borchardt RT. Solid state chemical instability of an asparaginyl residue in a model hexapeptide. J Pharm Sci Technol 1994; 48:167 - 23; PMID: 8069519
  • Oliyai C, Patel JP, Carr L, Borchardt RT. Chemical pathways of peptide degradation. VII. Solid state chemical instability of an aspartyl residue in a model hexapeptide. Pharm Res 1994; 11:901 - 8; http://dx.doi.org/10.1023/A:1018998312503; PMID: 7937533
  • Oliyai C, Borchardt RT. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides. Pharm Res 1994; 11:751 - 8; http://dx.doi.org/10.1023/A:1018944800691; PMID: 8058648
  • Oliyai C, Borchardt RT. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharm Res 1993; 10:95 - 102; http://dx.doi.org/10.1023/A:1018981231468; PMID: 8430066
  • Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 1987; 262:785 - 94; PMID: 3805008
  • Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 1987; 30:808 - 21; http://dx.doi.org/10.1111/j.1399-3011.1987.tb03390.x; PMID: 3440704
  • Xiao G, Bondarenko PV, Jacob J, Chu GC, Chelius D. 18O labeling method for identification and quantification of succinimide in proteins. Anal Chem 2007; 79:2714 - 21; http://dx.doi.org/10.1021/ac0617870; PMID: 17313184
  • Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, et al. Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 2007; 46:1534 - 44; http://dx.doi.org/10.1021/bi061500t; PMID: 17279618
  • Valliere-Douglass J, Wallace A, Balland A. Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions. J Chromatogr A 2008; 1214:81 - 9; http://dx.doi.org/10.1016/j.chroma.2008.10.078; PMID: 19012891
  • Huang HZ, Nichols A, Liu D. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest assisted digestion. Anal Chem 2009; 81:1686 - 92; http://dx.doi.org/10.1021/ac802708s; PMID: 19146457
  • Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 2001; 752:233 - 45; http://dx.doi.org/10.1016/S0378-4347(00)00548-X; PMID: 11270864
  • Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV. Accumulation of succinimide in a recombinant monoclonal antibody in mildly acidic buffers under elevated temperatures. Pharm Res 2007; 24:1145 - 56; http://dx.doi.org/10.1007/s11095-007-9241-4; PMID: 17385019
  • Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 2005; 77:1432 - 9; http://dx.doi.org/10.1021/ac0494174; PMID: 15732928
  • Doyle HA, Zhou J, Wolff MJ, Harvey BP, Roman RM, Gee RJ, et al. Isoaspartyl post-translational modification triggers anti-tumor T and B lymphocyte immunity. J Biol Chem 2006; 281:32676 - 83; http://dx.doi.org/10.1074/jbc.M604847200; PMID: 16950786
  • Doyle HA, Gee RJ, Mamula MJ. Altered immunogenicity of isoaspartate containing proteins. Autoimmunity 2007; 40:131 - 7; http://dx.doi.org/10.1080/08916930601165180; PMID: 17453712
  • Young GW, Hoofring SA, Mamula MJ, Doyle HA, Bunick GJ, Hu Y, et al. Protein L-isoaspartyl methyltransferase catalyzes in vivo racemization of Aspartate-25 in mammalian histone H2B. J Biol Chem 2005; 280:26094 - 8; http://dx.doi.org/10.1074/jbc.M503624200; PMID: 15908425
  • Zhang Y, Martinez T, Woodruff B, Goetze A, Bailey R, Pettit D, et al. Hydrophobic interaction chromatography of soluble interleukin I receptor type II to reveal chemical degradations resulting in loss of potency. Anal Chem 2008; 80:7022 - 8; http://dx.doi.org/10.1021/ac800928z; PMID: 18707131
  • Boyd D, Kaschak T, Yan B. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:955 - 60; http://dx.doi.org/10.1016/j.jchromb.2011.03.006; PMID: 21440514
  • Gong B, Wang L, Wang C, Geng X. Preparation of hydrophobic interaction chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application. J Chromatogr A 2004; 1022:33 - 9; http://dx.doi.org/10.1016/j.chroma.2003.09.063; PMID: 14753769
  • Kato Y, Nakatani S, Nakamura K, Kitamura T, Moriyama H, Hasegawa M, et al. Hydrophobicity gradient columns for the separation of trypsin inhibitor by hydrophobic interaction chromatography at low salt concentration. J Chromatogr A 2003; 986:83 - 8; http://dx.doi.org/10.1016/S0021-9673(02)01997-0; PMID: 12585325
  • Valliere-Douglass J, Jones L, Shpektor D, Kodama P, Wallace A, Balland A, et al. Separation and characterization of an IgG2 antibody containing a cyclic imide in CDR1 of light chain by hydrophobic interaction chromatography and mass spectrometry. Anal Chem 2008; 80:3168 - 74; http://dx.doi.org/10.1021/ac702245c; PMID: 18355059
  • Yan B, Steen S, Hambly D, Valliere-Douglass J, Vanden Bos T, Smallwood S, et al. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J Pharm Sci 2009; 98:3509 - 21; http://dx.doi.org/10.1002/jps.21655; PMID: 19475547
  • Yin S, Pastuskovas CV, Khawli LA, Stults JT. Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res 2013; 30:167 - 78; http://dx.doi.org/10.1007/s11095-012-0860-z; PMID: 22956170
  • Yu XC, Joe K, Zhang Y, Adriano A, Wang Y, Gazzano-Santoro H, et al. Accurate determination of succinimide degradation products using high fidelity trypsin digestion peptide map analysis. Anal Chem 2011; 83:5912 - 9; http://dx.doi.org/10.1021/ac200750u; PMID: 21692515
  • Zhao H, Graf O, Milovic N, Luan X, Bluemel M, Smolny M, et al. Formulation development of antibodies using robotic system and high-throughput laboratory (HTL). J Pharm Sci 2010; 99:2279 - 94; PMID: 20014026
  • Sukumar M, Doyle BL, Combs JL, Pekar AH. Opalescent appearance of an IgG1 antibody at high concentrations and its relationship to noncovalent association. Pharm Res 2004; 21:1087 - 93; http://dx.doi.org/10.1023/B:PHAM.0000032993.98705.73; PMID: 15290846
  • Hawe A, Hulse WL, Jiskoot W, Forbes RT. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res 2011; 28:2302 - 10; http://dx.doi.org/10.1007/s11095-011-0460-3; PMID: 21560019
  • Hawe A, Friess W, Sutter M, Jiskoot W. Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation. Anal Biochem 2008; 378:115 - 22; http://dx.doi.org/10.1016/j.ab.2008.03.050; PMID: 18455994
  • Bermudez O, Forciniti D. Aggregation and denaturation of antibodies: a capillary electrophoresis, dynamic light scattering, and aqueous two-phase partitioning study. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:17 - 24; http://dx.doi.org/10.1016/j.jchromb.2004.01.029; PMID: 15177155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.