1,161
Views
26
CrossRef citations to date
0
Altmetric
Review

Emerging antibody combinations in oncology

, &
Pages 338-351 | Received 22 Jun 2011, Accepted 25 May 2011, Published online: 01 Jul 2011

References

  • Reichert J. Probabilities of success for antibody therapeutics. mAbs 2009; 1:387 - 389
  • Xu A, Huang P. Receptor tyrosine kinase coactivation networks in cancer. Cancer Res 2010; 70:3857 - 3860
  • Hynes N, Lane H. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5:341 - 354
  • Wheeler D, Huang S, Kruser T, Nechrebecki M, Armstrong E, Benavente S, et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 2008; 27:3944 - 3956
  • Ritter C, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman J, et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 2007; 13:4909 - 4919
  • Lee-Hoeflich S, Crocker L, Yao E, Pham T, Munroe X, Hoeflich K, et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 2008; 68:5878 - 5887
  • Sergina N, Rausch M, Wang D, Blair J, Hann B, Shokat K, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007; 445:437 - 441
  • Ye D, Mendelsohn J, Fan Z. Augmentation of a humanized anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225. Oncogene 1999; 18:731 - 738
  • Kawaguchi Y, Kono K, Mimura K, Mitsui F, Sugai H, Akaike H, et al. Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. Br J Cancer 2007; 97:494 - 501
  • Half E, Sun Y, Sinicrope F. Anti-EGFR and ErbB-2 antibodies attenuate cyclooxygenase-2 expression and cooperatively inhibit survival of human colon cancer cells. Cancer Lett 2007; 251:237 - 246
  • Meira D, de Almeida V, Mororo J, Nobrega I, Bardella L, Silva R, et al. Combination of cetuximab with chemoradiation, trastuzumab or MAPK inhibitors: mechanisms of sensitisation of cervical cancer cells. Br J Cancer 2009; 101:782 - 791
  • Narayan M, Wilken J, Harris L, Baron A, Kimbler K, Maihle N. Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 2009; 69:2191 - 2194
  • Larbouret C, Robert B, Navarro-Teulon I, Thezenas S, Ladjemi M, Morisseau S, et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res 2007; 13:3356 - 3362
  • Schoeberl B, Faber A, Li D, Liang M, Crosby K, Onsum M, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 2010; 70:2485 - 2494
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8:915 - 928
  • Clemmons D. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov 2007; 6:821 - 833
  • Cohen B, Baker D, Soderstrom C, Tkalcevic G, Rossi A, Miller P, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005; 11:2063 - 2073
  • Rowinsky E, Youssoufian H, Tonra J, Solomon P, Burtrum D, Ludwig D. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 2007; 13:5549 - 5555
  • Hewish M, Chau I, Cunningham D. Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Pat Anticancer Drug Discov 2009; 4:54 - 72
  • Adams T, McKern N, Ward C. Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor. Growth Factors 2004; 22:89 - 95
  • Riedemann J, Takiguchi M, Sohail M, Macaulay V. The EGF receptor interacts with the type 1 IGF receptor and regulates its stability. Biochem Biophys Res Commun 2007; 355:707 - 714
  • Hendrickson A, Haluska P. Resistance pathways relevant to insulin-like growth factor-1 receptor-targeted therapy. Curr Opin Investig Drugs 2009; 10:1032 - 1040
  • Weroha S, Haluska P. IGF-1 receptor inhibitors in clinical trials—early lessons. J Mammary Gland Biol Neoplasia 2008; 13:471 - 483
  • Goetsch L, Gonzalez A, Leger O, Beck A, Pauwels P, Haeuw J, et al. A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 2005; 113:316 - 328
  • Galer C, Corey C, Wang Z, Younes M, Gomez-Rivera F, Jasser S, et al. Dual inhibition of epidermal growth factor receptor and insulin-like growth factor receptor I: Reduction of angiogenesis and tumor growth in cutaneous squamous cell carcinoma. Head Neck 2011; 33:189 - 198
  • Dong J, Sereno A, Aivazian D, Langley E, Miller B, Snyder W, et al. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity. mAbs 2011; 3:273 - 288
  • Reidy D, Vakiani E, Fakih M, Saif M, Hecht J, Goodman-Davis N, et al. Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer. J Clin Oncol 2010; 28:4240 - 4246
  • Chung C, Pohlmann P, Rothenberg M, Burkey B, Parker J, Palka K, et al. Insulin-like growth factor-1 receptor inhibitor, AMG-479, in cetuximab-refractory head and neck squamous cell carcinoma. Head Neck 2010; In press
  • Eder J, Vande Woude G, Boerner S, LoRusso P. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15:2207 - 2214
  • O'Toole J, Rabenau K, Burns K, Lu D, Mangalampalli V, Balderes P, et al. Therapeutic implications of a human neutralizing antibody to the macrophagestimulating protein receptor tyrosine kinase (RON), a c-MET family member. Cancer Res 2006; 66:9162 - 9170
  • Engelman J, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316:1039 - 1043
  • Okamoto W, Okamoto I, Tanaka K, Hatashita E, Yamada Y, Kuwata K, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther 2010; 9:2785 - 2792
  • Stabile L, Rothstein M, Keohavong P, Lenzner D, Land S, Gaither-Davis A, et al. Targeting of both the c-Met and EGFR pathways results in additive inhibition of lung tumorigenesis in transgenic mice. Cancers 2010; 2:2153 - 2170
  • Lal B, Goodwin C, Sang Y, Foss C, Cornet K, Muzamil S, et al. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts. Mol Cancer Ther 2009; 8:1751 - 1760
  • Bachleitner-Hofmann T, Sun M, Chen C, Tang L, Song L, Zeng Z, et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol Cancer Ther 2008; 7:3499 - 3508
  • Ferrara N, Gerber H, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669 - 676
  • Kim K, Li B, Winer J, Armanini M, Gillett N, Phillips H, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362:841 - 844
  • Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?. Nat Rev Cancer 2008; 8:942 - 956
  • Alitalo K, Tammela T, Petrova T. Lymphangiogenesis in development and human disease. Nature 2005; 438:946 - 953
  • Ellis L. The role of neuropilins in cancer. Mol Cancer Ther 2006; 5:1099 - 1107
  • Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006; 66:2650 - 2657
  • Persaud K, Tille J, Liu M, Zhu Z, Jimenez X, Pereira D, et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 2004; 117:2745 - 2756
  • Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 2007; 131:463 - 475
  • Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 2010; 141:178 - 190
  • Bais C, Wu X, Yao J, Yang S, Crawford Y, McCutcheon K, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 2010; 141:166 - 177
  • Pan Q, Chanthery Y, Liang W, Stawicki S, Mak J, Rathore N, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 2007; 11:53 - 67
  • Augustin H, Koh G, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009; 10:165 - 177
  • Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 2010; 10:575 - 585
  • Brown J, Cao Z, Pinzon-Ortiz M, Kendrew J, Reimer C, Wen S, et al. A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol Cancer Ther 2010; 9:145 - 156
  • Coxon A, Bready J, Min H, Kaufman S, Leal J, Yu D, et al. Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 2010; 9:2641 - 2651
  • Avraamides C, Garmy-Susini B, Varner J. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008; 8:604 - 617
  • Desgrosellier J, Cheresh D. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10:9 - 22
  • Ramakrishnan V, Bhaskar V, Law D, Wong M, DuBridge R, Breinberg D, et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol 2006; 5:273 - 286
  • Kim T, Landen C, Lin Y, Mangala L, Lu C, Nick A, et al. Combined anti-angiogenic therapy against VEGF and integrin alphaVbeta3 in an orthotopic model of ovarian cancer. Cancer Biol Ther 2009; 8:2263 - 2272
  • Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 2001; 158:1111 - 1120
  • Zhang Y, Su Y, Volpert O, Vande Woude G. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 2003; 100:12718 - 12723
  • Rosen P, Sweeney C, Park D, Beaupre D, Deng H, Leitch I, et al. A phase Ib study of AMG 102 in combination with bevacizumab or motesanib in patients with advanced solid tumors. Clin Cancer Res 2010; 16:2677 - 2687
  • Shen J, Vil MD, Zhang H, Tonra J, Rong L, Damoci C, et al. An antibody directed against PDGF receptorbeta enhances the antitumor and the anti-angiogenic activities of an anti-VEGF receptor 2 antibody. Biochem Biophys Res Commun 2007; 357:1142 - 1147
  • Shen J, Vil M, Prewett M, Damoci C, Zhang H, Li H, et al. Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia 2009; 11:594 - 604
  • Rothlin C, Lemke G. TAM receptor signaling and autoimmune disease. Curr Opin Immunol 2010; 22:740 - 746
  • Pasquale E. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010; 10:165 - 180
  • Linger R, Keating A, Earp H, Graham D. TAM receptor tyrosine kinases: biologic functions, signaling and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35 - 83
  • Li Y, Ye X, Tan C, Hongo J, Zha J, Liu J, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009; 28:3442 - 3455
  • Krasnoperov V, Kumar S, Ley E, Li X, Scehnet J, Liu R, et al. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol 2010; 176:2029 - 2038
  • Hu-Lowe D, Chen E, Zhang L, Watson K, Mancuso P, Lappin P, et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 2011; 71:1362 - 1373
  • Jakobsson L, Bentley K, Gerhardt H. VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 2009; 37:1233 - 1236
  • Thurston G, Noguera-Troise I, Yancopoulos G. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 2007; 7:327 - 331
  • Li J, Harris A. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci 2009; 14:3094 - 3110
  • Thurston G, Kitajewski J. VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 2008; 99:1204 - 1209
  • Hoey T, Yen W, Axelrod F, Basi J, Donigian L, Dylla S, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 2009; 5:168 - 177
  • Fischer M, Yen W, Kapoun A, Wang M, O'Young G, Lewicki J, et al. Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res 2011; 71:1520 - 1525
  • Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W, Chanthery Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444:1083 - 1087
  • Yan M, Callahan C, Beyer J, Allamneni K, Zhang G, Ridgway J, et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 2010; 463:6 - 7
  • Pennell N, Lynch T Jr. Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist 2009; 14:399 - 411
  • Langer C, Soria J. The role of anti-epidermal growth factor receptor and anti-vascular endothelial growth factor therapies in the treatment of non-small-cell lung cancer. Clin Lung Cancer 2010; 11:82 - 90
  • Cohen D, Hochster H. Update on clinical data with regimens inhibiting angiogenesis and epidermal growth factor receptor for patients with newly diagnosed metastatic colorectal cancer. Clin Colorectal Cancer 2007; 7:21 - 27
  • Geva R, Prenen H, Topal B, Aerts R, Vannoote J, Van Cutsem E. Biologic modulation of chemotherapy in patients with hepatic colorectal metastases: the role of anti-VEGF and anti-EGFR antibodies. J Surg Oncol 2010; 102:937 - 945
  • Diao Y, Tian X, Huang Y, Chen L, Lin X, Zhuang Z. Enhanced cancer therapy with the combination of EGFR and VEGFR-2 targeting in an orthotopic glioblastoma model. J Chemother 2010; 22:407 - 412
  • Shaheen R, Ahmad S, Liu W, Reinmuth N, Jung Y, Tseng W, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 2001; 85:584 - 589
  • Jung Y, Mansfield P, Akagi M, Takeda A, Liu W, Bucana C, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38:1133 - 1140
  • Lamszus K, Brockmann M, Eckerich C, Bohlen P, May C, Mangold U, et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor and vascular endothelial-cadherin. Clin Cancer Res 2005; 11:4934 - 4940
  • Sano D, Choi S, Milas Z, Zhou G, Galer C, Su Y, et al. The effect of combination anti-endothelial growth factor receptor and anti-vascular endothelial growth factor receptor 2 targeted therapy on lymph node metastasis: a study in an orthotopic nude mouse model of squamous cell carcinoma of the oral tongue. Arch Otolaryngol Head Neck Surg 2009; 135:411 - 420
  • Tonra J, Deevi D, Corcoran E, Li H, Wang S, Carrick F, et al. Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin Cancer Res 2006; 12:2197 - 2207
  • Wong N, Fernando N, Nixon A, Cushman S, Aklilu M, Bendell J, et al. A phase II study of capecitabine, oxaliplatin, bevacizumab and cetuximab in the treatment of metastatic colorectal cancer. Anticancer Res 2011; 31:255 - 261
  • Ocean A, Polite B, Christos P, Horvath L, Hamilton A, Matulich D, et al. Cetuximab is associated with excessive toxicity when combined with bevacizumab Plus mFOLFOX6 in metastatic colorectal carcinoma. Clin Colorectal Cancer 2010; 9:290 - 296
  • Spigel D, Greco F, Waterhouse D, Shipley D, Lane C, Vazquez E, et al. Phase II trial of FOLFOX6, bevacizumab and cetuximab in the first-line treatment of metastatic colorectal cancer. Clin Adv Hematol Oncol 2010; 8:480 - 485
  • Hecht J, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27:672 - 680
  • Tol J, Koopman M, Cats A, Rodenburg C, Creemers G, Schrama J, et al. Chemotherapy, bevacizumab and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360:563 - 572
  • Emlet D, Brown K, Kociban D, Pollice A, Smith C, Ong B, et al. Response to trastuzumab, erlotinib and bevacizumab, alone and in combination, is correlated with the level of human epidermal growth factor receptor-2 expression in human breast cancer cell lines. Mol Cancer Ther 2007; 6:2664 - 2674
  • du Manoir J, Francia G, Man S, Mossoba M, Medin J, Viloria-Petit A, et al. Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 2006; 12:904 - 916
  • Li H, Adachi Y, Yamamoto H, Min Y, Ohashi H, Ii M, et al. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer 2011; 117:3135 - 3147
  • Sakaguchi M, Kajio T, Kawahara K, Kato K. Antibodies against basic fibroblast growth factor inhibit the autocrine growth of pulmonary artery endothelial cells. FEBS Lett 1988; 233:163 - 166
  • Kurokawa M, Doctrow S, Klagsbrun M. Neutralizing antibodies inhibit the binding of basic fibroblast growth factor to its receptor but not to heparin. J Biol Chem 1989; 264:7686 - 7691
  • Schmitz K, Ferguson K. Interaction of antibodies with ErbB receptor extracellular regions. Exp Cell Res 2009; 315:659 - 670
  • Gutowski M, Briggs S, Johnson D. Epidermal growth factor receptor-reactive monoclonal antibodies: xenograft antitumor activity alone and as drug immunoconjugates. Cancer Res 1991; 51:5471 - 5475
  • Schiller J. Developments in epidermal growth factor receptor-targeting therapy for solid tumors: focus on matuzumab (EMD 72000). Cancer Invest 2008; 26:81 - 95
  • Schmiedel J, Blaukat A, Li S, Knochel T, Ferguson K. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 2008; 13:365 - 373
  • Mishima K, Johns T, Luwor R, Scott A, Stockert E, Jungbluth A, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61:5349 - 5354
  • Johns T, Adams T, Cochran J, Hall N, Hoyne P, Olsen M, et al. Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. J Biol Chem 2004; 279:30375 - 30384
  • Perera R, Narita Y, Furnari F, Gan H, Murone C, Ahlkvist M, et al. Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptorspecific antibody generates enhanced antitumor activity. Clin Cancer Res 2005; 11:6390 - 6399
  • Pedersen M, Jacobsen H, Koefoed K, Hey A, Pyke C, Haurum J, et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010; 70:588 - 597
  • Spangler J, Neil J, Abramovitch S, Yarden Y, White F, Lauffenburger D, et al. Combination antibody treatment downregulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107:13252 - 13257
  • Meira D, Nobrega I, de Almeida V, Mororo J, Cardoso A, Silva R, et al. Different antiproliferative effects of matuzumab and cetuximab in A431 cells are associated with persistent activity of the MAPK pathway. Eur J Cancer 2009; 45:1265 - 1273
  • Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res 2008; 68:4998 - 5003
  • Kamat V, Donaldson J, Kari C, Quadros M, Lelkes P, Chaiken I, et al. Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol Ther 2008; 7:726 - 733
  • Cho H, Mason K, Ramyar K, Stanley A, Gabelli S, Denney D Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003; 421:756 - 760
  • Molina M, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61:4744 - 4749
  • Ghosh R, Narasanna A, Wang S, Liu S, Chakrabarty A, Balko J, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res 2011; 71:1871 - 1882
  • Franklin M, Carey K, Vajdos F, Leahy D, de Vos A, Sliwkowski M. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5:317 - 328
  • Baselga J, Swain S. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9:463 - 475
  • Drebin J, Link V, Greene M. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 1988; 2:273 - 277
  • Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 2009; 69:9330 - 9336
  • Nahta R, Hung M, Esteva F. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64:2343 - 2346
  • Yao E, Zhou W, Lee-Hoeflich S, Truong T, Haverty P, Eastham-Anderson J, et al. Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab and pertuzumab. Clin Cancer Res 2009; 15:4147 - 4156
  • Baselga J, Gelmon K, Verma S, Wardley A, Conte P, Miles D, et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol 2010; 28:1138 - 1144
  • Portera C, Walshe J, Rosing D, Denduluri N, Berman A, Vatas U, et al. Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with [corrected] human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin Cancer Res 2008; 14:2710 - 2716
  • Jacobs S, Cook S, Svoboda M, Van Wyk J. Interaction of the monoclonal antibodies alpha IR-1 and alpha IR-3 with insulin and somatomedin-C receptors. Endocrinology 1986; 118:223 - 226
  • Arteaga C, Kitten L, Coronado E, Jacobs S, Kull F Jr, Allred D, et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 1989; 84:1418 - 1423
  • Soos M, Field C, Lammers R, Ullrich A, Zhang B, Roth R, et al. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding and biological activity. J Biol Chem 1992; 267:12955 - 12963
  • Doern A, Cao X, Sereno A, Reyes C, Altshuler A, Huang F, et al. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J Biol Chem 2009; 284:10254 - 10267
  • Dong J, Demarest S, Sereno A, Tamraz S, Langley E, Doern A, et al. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 2010; 9:2593 - 2604
  • Dong J, Sereno A, Snyder W, Miller B, Tamraz S, Doern A, et al. Stable IgG-like bispecific antibodies directed toward the Type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem 2011; 286:4703 - 4717
  • Cao B, Su Y, Oskarsson M, Zhao P, Kort E, Fisher R, et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci USA 2001; 98:7443 - 7448
  • Gao C, Xie Q, Zhang Y, Su Y, Zhao P, Cao B, et al. Therapeutic potential of hepatocyte growth factor/scatter factor neutralizing antibodies: inhibition of tumor growth in both autocrine and paracrine hepatocyte growth factor/scatter factor: c-Met-driven models of leiomyosarcoma. Mol Cancer Ther 2009; 8:2803 - 2810
  • Jun H, Sun J, Rex K, Radinsky R, Kendall R, Coxon A, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 2007; 13:6735 - 6742
  • Kim K, Wang L, Su Y, Gillespie G, Salhotra A, Lal B, et al. Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin Cancer Res 2006; 12:1292 - 1298
  • van der Horst E, Chinn L, Wang M, Velilla T, Tran H, Madrona Y, et al. Discovery of fully human anti-MET monoclonal antibodies with antitumor activity against colon cancer tumor models in vivo. Neoplasia 2009; 11:355 - 364
  • Tvorogov D, Anisimov A, Zheng W, Leppanen V, Tammela T, Laurinavicius S, et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 2010; 18:630 - 640
  • Ashkenazi A, Dixit V. Death receptors: signaling and modulation. Science 1998; 281:1305 - 1308
  • Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: Are we on the right TRAIL?. Cancer Treat Rev 2009; 35:280 - 288
  • Chen L, Park S, Tumanov A, Hau A, Sawada K, Feig C, et al. CD95 promotes tumour growth. Nature 2010; 465:492 - 496
  • Zhang J, Adams A, Ridky T, Tao S, Khavari P. Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia. Cancer Res 2007; 67:3827 - 3834
  • Yang A, Wilson N, Ashkenazi A. Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 2010; 22:837 - 844
  • Stagg J, Sharkey J, Pommey S, Young R, Takeda K, Yagita H, et al. Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumor immune response. Proc Natl Acad Sci USA 2008; 105:16254 - 16259
  • Maddipatla S, Hernandez-Ilizaliturri F, Knight J, Czuczman M. Augmented antitumor activity against B-cell lymphoma by a combination of monoclonal antibodies targeting TRAIL-R1 and CD20. Clin Cancer Res 2007; 13:4556 - 4564
  • Vega M, Huerta-Yepez S, Jazirehi A, Garban H, Bonavida B. Rituximab (chimeric anti-CD20) sensitizes B-NHL cell lines to Fas-induced apoptosis. Oncogene 2005; 24:8114 - 8127
  • Daniel D, Yang B, Lawrence D, Totpal K, Balter I, Lee W, et al. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 2007; 110:4037 - 4046
  • Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R, et al. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 2006; 25:5145 - 5154
  • Michaelson J, Demarest S, Miller B, Amatucci A, Snyder W, Wu X, et al. Anti-tumor activity of stability-engineered IgG-like bispecific antibodies targeting TRAIL-R2 and LTbetaR. mAbs 2009; 1:128 - 141
  • Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler R, et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 2006; 12:693 - 698
  • Peggs K, Quezada S, Allison J. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 2008; 224:141 - 165
  • Paterson A, Sharpe A. Taming tissue-specific T cells: CTLA-4 reins in self-reactive T cells. Nat Immunol 2010; 11:109 - 111
  • Inman B, Frigola X, Dong H, Kwon E. Costimulation, coinhibition and cancer. Curr Cancer Drug Targets 2007; 7:15 - 30
  • Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007; 19:813 - 824
  • Butte M, Keir M, Phamduy T, Sharpe A, Freeman G. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27:111 - 122
  • Parry R, Chemnitz J, Frauwirth K, Lanfranco A, Braunstein I, Kobayashi S, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25:9543 - 9553
  • Fife B, Pauken K, Eagar T, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10:1185 - 1192
  • Rudd C. The reverse stop-signal model for CTLA4 function. Nat Rev Immunol 2008; 8:153 - 160
  • Curran M, Montalvo W, Yagita H, Allison J. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107:4275 - 4280
  • Mangsbo S, Sandin L, Anger K, Korman A, Loskog A, Totterman T. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 2010; 33:225 - 235
  • Yu P, Steel J, Zhang M, Morris J, Waldmann T. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010; 16:6019 - 6028
  • Brahmer J, Drake C, Wollner I, Powderly J, Picus J, Sharfman W, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics and immunologic correlates. J Clin Oncol 2010; 28:3167 - 3175
  • Shevach E, Stephens G. The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity?. Nat Rev Immunol 2006; 6:613 - 618
  • Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005; 202:885 - 891
  • Ascierto P, Simeone E, Sznol M, Fu Y, Melero I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 2010; 37:508 - 516
  • Kocak E, Lute K, Chang X, May K Jr, Exten K, Zhang H, et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res 2006; 66:7276 - 7284
  • Molckovsky A, Siu L. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting. J Hematol Oncol 2008; 1:20
  • Takeda K, Kojima Y, Uno T, Hayakawa Y, Teng M, Yoshizawa H, et al. Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. J Immunol 2010; 184:5493 - 5501
  • Saha A, Chatterjee S. Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer. Scand J Immunol 2010; 71:70 - 82
  • Ito D, Ogasawara K, Iwabuchi K, Inuyama Y, Onoe K. Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. J Immunol 2000; 164:1230 - 1235
  • Melero I, Martinez-Forero I, Dubrot J, Suarez N, Palazon A, Chen L. Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin Cancer Res 2009; 15:1507 - 1509
  • Ngiow S, von Scheidt B, Akiba H, Yagita H, Teng M, Smyth M. Anti-TIM3 antibody promotes T cell IFN-{gamma}-mediated anti-tumor immunity and suppresses established tumors. Cancer Res 2011; 71:3540 - 3551
  • Teng M, von Scheidt B, Duret H, Towne J, Smyth M. Anti-IL-23 monoclonal antibody synergizes in combination with targeted therapies or IL-2 to suppress tumor growth and metastases. Cancer Res 2011; 71:2077 - 2086
  • Canon J, Bryant R, Roudier M, Osgood T, Jones J, Miller R, et al. Inhibition of RANKL increases the anti-tumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis. Bone 2010; 46:1613 - 1619
  • Cheson B, Leonard J. Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. N Engl J Med 2008; 359:613 - 626
  • Fanale M, Younes A. Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma. Drugs 2007; 67:333 - 350
  • Sikder M, Friedberg J. Beyond rituximab: The future of monoclonal antibodies in B-cell non-Hodgkin lymphoma. Curr Hematol Malig Rep 2008; 3:187 - 193
  • Leonard J, Friedberg J, Younes A, Fisher D, Gordon L, Moore J, et al. A phase I/II study of galiximab (an anti-CD80 monoclonal antibody) in combination with rituximab for relapsed or refractory, follicular lymphoma. Ann Oncol 2007; 18:1216 - 1223
  • Leonard J, Coleman M, Ketas J, Ashe M, Fiore J, Furman R, et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin's lymphoma. J Clin Oncol 2005; 23:5044 - 5051
  • Leonard J, Schuster S, Emmanouilides C, Couture F, Teoh N, Wegener W, et al. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer 2008; 113:2714 - 2723
  • Faderl S, Ferrajoli A, Wierda W, O'Brien S, Lerner S, Keating M. Alemtuzumab by continuous intravenous infusion followed by subcutaneous injection plus rituximab in the treatment of patients with chronic lymphocytic leukemia recurrence. Cancer 2010; 116:2360 - 2365
  • Cruz R, Hernandez-Ilizaliturri F, Olejniczak S, Deeb G, Knight J, Wallace P, et al. CD52 overexpression affects rituximab-associated complement-mediated cytotoxicity but not antibody-dependent cellular cytotoxicity: preclinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin lymphoma. Leuk Lymphoma 2007; 48:2424 - 2436
  • Nijmeijer B, van Schie M, Halkes C, Griffioen M, Willemze R, Falkenburg J. A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood 2010; 116:5930 - 5940
  • Lin T, Donohue K, Byrd J, Lucas M, Hoke E, Bengtson E, et al. Consolidation therapy with subcutaneous alemtuzumab after fludarabine and rituximab induction therapy for previously untreated chronic lymphocytic leukemia: final analysis of CALGB 10,101. J Clin Oncol 2010; 28:4500 - 4506
  • Elter T, Eichhorst B, Wendtner C. Use of alemtuzumab and rituximab consolidation in CLL: Pros and cons. Curr Hematol Malig Rep 2009; 4:43 - 46
  • Byrd J, Kipps T, Flinn I, Castro J, Lin T, Wierda W, et al. Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood 2010; 115:489 - 495
  • Alinari L, Yu B, Christian B, Yan F, Shin J, Lapalombella R, et al. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 2011; 117:4530 - 4541
  • Stein R, Qu Z, Cardillo T, Chen S, Rosario A, Horak I, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 2004; 104:3705 - 3711
  • Chao M, Alizadeh A, Tang C, Myklebust J, Varghese B, Gill S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142:699 - 713
  • Ganjoo K, An C, Robertson M, Gordon L, Sen J, Weisenbach J, et al. Rituximab, bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma 2006; 47:998 - 1005
  • O'Mahony D, Morris J, Stetler-Stevenson M, Matthews H, Brown M, Fleisher T, et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res 2009; 15:2514 - 2522
  • Tolstrup A, Frandsen T, Bregenholt S. Development of recombinant human polyclonal antibodies for the treatment of complex human diseases. Expert Opin Biol Ther 2006; 6:905 - 912
  • Chan A, Carter P. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010; 10:301 - 316
  • Merchant A, Zhu Z, Yuan J, Goddard A, Adams C, Presta L, et al. An efficient route to human bispecific IgG. Nat Biotechnol 1998; 16:677 - 681
  • Brennan M, Davison P, Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 1985; 229:81 - 83
  • Clark M, Gilliland L, Waldmann H. The potential of hybrid antibodies secreted by hybrid-hybridomas in tumour therapy. Int J Cancer Suppl 1988; 2:15 - 17
  • Glennie M, McBride H, Worth A, Stevenson G. Preparation and performance of bispecific F(ab'gamma)2 antibody containing thioether-linked Fab' gamma fragments. J Immunol 1987; 139:2367 - 2375
  • Demarest S, Glaser S. Antibody therapeutics, antibody engineering and the merits of protein stability. Curr Opin Drug Discov Devel 2008; 11:675 - 687
  • Worn A, Pluckthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol 2001; 305:989 - 1010
  • Fischer N, Leger O. Bispecific antibodies: molecules that enable novel therapeutic strategies. Pathobiology 2007; 74:3 - 14
  • Binz H, Amstutz P, Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257 - 1268
  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321:974 - 977
  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007; 25:1290 - 1297
  • Emanuel S, Engle L, Chao G, Zhu R, Cao C, Lin Z, et al. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. mAbs 2011; 3:38 - 48
  • Mabry R, Lewis K, Moore M, McKernan P, Bukowski T, Bontadelli K, et al. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel 2010; 23:115 - 127
  • Dimasi N, Gao C, Fleming R, Woods R, Yao X, Shirinian L, et al. The design and characterization of oligospecific antibodies for simultaneous targeting of multiple disease mediators. J Mol Biol 2009; 393:672 - 692
  • Coloma M, Morrison S. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol 1997; 15:159 - 163
  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 2010; 399:436 - 449
  • Gunasekaran K, Pentony M, Shen M, Garrett L, Forte C, Woodward A, et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem 2010; 285:19637 - 19646
  • Bostrom J, Yu S, Kan D, Appleton B, Lee C, Billeci K, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009; 323:1610 - 1614
  • Mathew J, Taylor B, Bader G, Pyarajan S, Antoniotti M, Chinnaiyan A, et al. From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput Biol 2007; 3:12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.