863
Views
4
CrossRef citations to date
0
Altmetric
Commentary

Repetitive sequences, genomic instability, and Barrett’s esophageal adenocarcinoma

Pages 208-212 | Received 30 Jun 2011, Accepted 22 Jul 2011, Published online: 01 Sep 2011

References

  • Britten RJ, Kohne DE. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 1968; 161:529 - 540; PMID: 4874239; http://dx.doi.org/10.1126/science.161.3841.529
  • Debrauwere H, Gendrel CG, Lechat S, Dutreix M. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 1997; 79:577 - 586; PMID: 9466695; http://dx.doi.org/10.1016/S0300-9084(97)82006-8
  • Csink AK, Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet 1998; 14:200 - 204; PMID: 9613205; http://dx.doi.org/10.1016/S0168-9525(98)01444-9
  • Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P. A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes and derivation of a new consensus sequence. Nucleic Acids Res 1991; 19:1179 - 1182; PMID: 2030938; http://dx.doi.org/10.1093/nar/19.6.1179
  • Jeffreys AJ. Highly variable minisatellites and DNA fingerprints. Biochem Soc Trans 1987; 15:309 - 317; PMID: 2887471
  • Wahls WP, Wallace LJ, Moore PD. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 1990; 60:95 - 103; PMID: 2295091; http://dx.doi.org/10.1016/0092-8674(90)90719-U
  • Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 2005; 437:94 - 100; PMID: 16136133; http://dx.doi.org/10.1038/nature04029
  • Eckert KA, Hile SE. Every microsatellite is different: Intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol Carcinog 2009; 48:379 - 388; PMID: 19306292; http://dx.doi.org/10.1002/mc.20499
  • Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241 - 259; PMID: 17506661; http://dx.doi.org/10.1146/annurev.genom.8.080706.092416
  • Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 2007; 41:331 - 368; PMID: 18076328; http://dx.doi.org/10.1146/annurev.genet.40.110405.090448
  • Konkel MK, Batzer MA. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010; 20:211 - 221; PMID: 20307669; http://dx.doi.org/10.1016/j.semcancer.2010.03.001
  • Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691 - 703; PMID: 19763152; http://dx.doi.org/10.1038/nrg2640
  • Okada N. SINEs: Short interspersed repeated elements of the eukaryotic genome. Trends Ecol Evol 1991; 6:358 - 361; PMID: 21232509; http://dx.doi.org/10.1016/0169-5347(91)90226-N
  • Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics 2008; 1:4; PMID: 19014668; http://dx.doi.org/10.1186/1755-8417-1-4
  • McVean G. What drives recombination hotspots to repeat DNA in humans?. Philos Trans R Soc Lond B Biol Sci 2010; 365:1213 - 1218; PMID: 20308096; http://dx.doi.org/10.1098/rstb.2009.0299
  • Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc Biol Sci 2005; 272:877 - 886; PMID: 16024341; http://dx.doi.org/10.1098/rspb.2004.3045
  • Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 2006; 7:552 - 564; PMID: 16770338; http://dx.doi.org/10.1038/nrg1895
  • Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002; 18:74 - 82; PMID: 11818139; http://dx.doi.org/10.1016/S0168-9525(02)02592-1
  • Shaw CJ, Lupski JR. Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 2004; 13:R57 - R64; PMID: 14764619; http://dx.doi.org/10.1093/hmg/ddh073
  • Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003; 73:1302 - 1315; PMID: 14639526; http://dx.doi.org/10.1086/379979
  • Kurotaki N, Stankiewicz P, Wakui K, Niikawa N, Lupski JR. Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats. Hum Mol Genet 2005; 14:535 - 542; PMID: 15640245; http://dx.doi.org/10.1093/hmg/ddi050
  • López-Correa C, Dorschner M, Brems H, Lázaro C, Clementi M, Upadhyaya M, et al. Recombination hotspot in NF1 microdeletion patients. Hum Mol Genet 2001; 10:1387 - 1392; PMID: 11440991; http://dx.doi.org/10.1093/hmg/10.13.1387
  • Lupski JR. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol 2004; 5:242; PMID: 15461806; http://dx.doi.org/10.1186/gb-2004-5-10-242
  • Wells RD. Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 2007; 32:271 - 278; PMID: 17493823; http://dx.doi.org/10.1016/j.tibs.2007.04.003
  • Cheng RZ, Shammas MA, Li J, Shmookler Reis RJ. Expression of SV40 large T antigen stimulates reversion of a chromosomal gene duplication in human cells. Exp Cell Res 1997; 234:300 - 312; PMID: 9260898; http://dx.doi.org/10.1006/excr.1997.3649
  • Shammas MA, Xia SJ, Shmookler Reis RJ. Induction of duplication reversion in human fibroblasts, by wild-type and mutated SV40 T antigen, covaries with the ability to induce host DNA synthesis. Genetics 1997; 146:1417 - 1428; PMID: 9258684
  • Windle B, Draper BW, Yin YX, O'Gorman S, Wahl GM. A central role for chromosome breakage in gene amplification, deletion formation and amplicon integration. Genes Dev 1991; 5:160 - 174; PMID: 1995414; http://dx.doi.org/10.1101/gad.5.2.160
  • Bishop AJ, Schiestl RH. Role of homologous recombination in carcinogenesis. Exp Mol Pathol 2003; 74:94 - 105; PMID: 12710940; http://dx.doi.org/10.1016/S0014-4800(03)00010-8
  • Li J, Ayyadevera R, Shmookler Reis RJ. Carcinogens stimulate intrachromosomal homologous recombination at an endogenous locus in human diploid fibroblasts. Mutat Res 1997; 385:173 - 193; PMID: 9506887
  • Sengstag C. The role of mitotic recombination in carcinogenesis. Crit Rev Toxicol 1994; 24:323 - 353; PMID: 7857521; http://dx.doi.org/10.3109/10408449409017922
  • Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 2009; 113:2290 - 2297; PMID: 19050310; http://dx.doi.org/10.1182/blood-2007-05-089193
  • Xia SJ, Shammas MA, Shmookler Reis RJ. Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase. Mol Cell Biol 1997; 17:7151 - 7158; PMID: 9372947
  • Bastos HN, Antγo MR, Silva SN, Azevedo AP, Manita I, Teixeira V, et al. Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid 2009; 19:1067 - 1075; PMID: 19772428; http://dx.doi.org/10.1089/thy.2009.0099
  • Silva SN, Tomar M, Paulo C, Gomes BC, Azevedo AP, Teixeira V, et al. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol 2010; 34:85 - 92; PMID: 20004634; http://dx.doi.org/10.1016/j.canep.2009.11.002
  • Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S, et al. Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 2011; 30:3585 - 3598; PMID: 21423218; http://dx.doi.org/10.1038/onc.2011.83
  • Myers S, Freeman C, Auton A, Donnelly P, McVean G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 2008; 40:1124 - 1129; PMID: 19165926; http://dx.doi.org/10.1038/ng.213
  • Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA 2008; 105:19366 - 19371; PMID: 19036926; http://dx.doi.org/10.1073/pnas.0807866105
  • Clemons NJ, McColl KE, Fitzgerald RC. Nitric oxide and acid induce double-strand DNA breaks in Barrett's esophagus carcinogenesis via distinct mechanisms. Gastroenterology 2007; 133:1198 - 1209; PMID: 17919494; http://dx.doi.org/10.1053/j.gastro.2007.06.061