1,174
Views
26
CrossRef citations to date
0
Altmetric
Review

Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination

&
Pages 187-196 | Received 31 Jul 2011, Accepted 17 Oct 2011, Published online: 01 Oct 2011

References

  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124:837 - 848; PMID: 16497592; http://dx.doi.org/10.1016/j.cell.2006.02.017
  • Xu J, Chiang HC, Bjursell MK, Gordon JI. Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol 2004; 12:21 - 28; PMID: 14700548; http://dx.doi.org/10.1016/j.tim.2003.11.007
  • Mai V, Morris JG Jr. Colonic bacterial flora: changing understandings in the molecular age. J Nutr 2004; 134:459 - 464; PMID: 14747689
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361:512 - 519; PMID: 12583961; http://dx.doi.org/10.1016/S0140-6736(03)12489-0
  • Salyers AA. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 1984; 38:293 - 313; PMID: 6388494; http://dx.doi.org/10.1146/annurev.mi.38.100184.001453
  • Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007; 20:593 - 621; PMID: 17934076; http://dx.doi.org/10.1128/CMR.00008-07
  • Whittle G, Shoemaker NB, Salyers AA. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci 2002; 59:2044 - 2054; PMID: 12568330; http://dx.doi.org/10.1007/s000180200004
  • Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 2001; 67:561 - 568; PMID: 11157217; http://dx.doi.org/10.1128/AEM.67.2.561-568.2001
  • Reid G. When microbe meets human. Clin Infect Dis 2004; 39:827 - 830; PMID: 15472815; http://dx.doi.org/10.1086/423387
  • Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 2001; 414:555 - 558; PMID: 11734857; http://dx.doi.org/10.1038/35107092
  • Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science 2005; 307:1778 - 1781; PMID: 15774760; http://dx.doi.org/10.1126/science.1106469
  • Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004; 427:441 - 444; PMID: 14749831; http://dx.doi.org/10.1038/nature02285
  • Waters VL. Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci 1999; 4:D433 - D456; PMID: 10228095; http://dx.doi.org/10.2741/Waters
  • Brook I. Endocarditis due to anaerobic bacteria. Cardiology 2002; 98:1 - 5; PMID: 12373039; http://dx.doi.org/10.1159/000064684
  • Vedantam G. Antimicrobial resistance in Bacteroides spp.: occurrence and dissemination. Future Microbiol 2009; 4:413 - 423; PMID: 19416011; http://dx.doi.org/10.2217/fmb.09.12
  • Shinagawa N, Osanai H, Hirata K, Furuhata T, Mizukuchi T, Yanai Y, et al. Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents-special references to bacteria isolated between April 2009 and March 2010. Jpn J Antibiot 2011; 64:125 - 169; PMID: 21861307
  • Papaparaskevas J, Katsandri A, Pantazatou A, Stefanou I, Avlamis A, Legakis NJ, et al. Epidemiological characteristics of infections caused by Bacteroides, Prevotella and Fusobacterium species: a prospective observational study. Anaerobe 2011; 17:113 - 117; PMID: 21664284; http://dx.doi.org/10.1016/j.anaerobe.2011.05.013
  • Basset C, Holton J, Bazeos A, Vaira D, Bloom S. Are Helicobacter species and enterotoxigenic Bacteroides fragilis involved in inflammatory bowel disease?. Dig Dis Sci 2004; 49:1425 - 1432; PMID: 15481314; http://dx.doi.org/10.1023/B:DDAS.0000042241.13489.88
  • Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J Jr. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis 2000; 6:171 - 174; PMID: 10756151; http://dx.doi.org/10.3201/eid0602.000210
  • Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006; 12:782 - 786; PMID: 16842574
  • Yoshino Y, Kitazawa T, Ikeda M, Tatsuno K, Yanagimoto S, Okugawa S, et al. Clinical features of Bacteroides bacteremia and their association with colorectal carcinoma. Infection 2011; In press PMID: 21773761; http://dx.doi.org/10.1007/s15010-011-0159-8
  • Polk BF, Kasper DL. Bacteroides fragilis subspecies in clinical isolates. Ann Intern Med 1977; 86:569 - 571; PMID: 322563
  • Koeth LM, Good CE, Appelbaum PC, Goldstein EJ, Rodloff AC, Claros M, et al. Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxiclav and five other antimicrobial agents. J Antimicrob Chemother 2004; 53:1039 - 1044; PMID: 15128729; http://dx.doi.org/10.1093/jac/dkh248
  • Snydman DR, Jacobus NV, McDermott LA, Ruthazer R, Golan Y, Goldstein EJ, et al. National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob Agents Chemother 2007; 51:1649 - 1655; PMID: 17283189; http://dx.doi.org/10.1128/AAC.01435-06
  • Betriu C, Culebras E, Gomez M, Lopez F, Rodriguez-Avial I, Picazo JJ. Resistance trends of the Bacteroides fragilis group over a 10-year period, 1997 to 2006, in Madrid, Spain. Antimicrob Agents Chemother 2008; 52:2686 - 2690; PMID: 18474575; http://dx.doi.org/10.1128/AAC.00081-08
  • Hedberg M, Nord CE. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin Microbiol Infect 2003; 9:475 - 488; PMID: 12848722; http://dx.doi.org/10.1046/j.1469-0691.2003.00674.x
  • Stein GE, Goldstein EJ. Fluoroquinolones and anaerobes. Clin Infect Dis 2006; 42:1598 - 1607; PMID: 16652318; http://dx.doi.org/10.1086/503907
  • Betriu C, Rodriguez-Avial I, Gomez M, Culebras E, Picazo JJ. Changing patterns of fluoroquinolone resistance among Bacteroides fragilis group organisms over a 6-year period (1997–2002). Diagn Microbiol Infect Dis 2005; 53:221 - 223; PMID: 16243476; http://dx.doi.org/10.1016/j.diagmicrobio.2005.06.012
  • Vieira BD, Boente JM, Rodrigues RF, Miranda K, Avelar KE, R MCPD, Candida de SFM. Decreased susceptibility to nitroimidazoles among Bacteroides species in Brazil. Curr Microbiol 2006; 52:27 - 32; PMID: 16391998
  • Chaudhry R, Mathur P, Dhawan B, Kumar L. Emergence of metronidazole-resistant Bacteroides fragilis, India. Emerg Infect Dis 2001; 7:485 - 486; PMID: 11384542
  • Schapiro JM, Gupta R, Stefansson E, Fang FC, Limaye AP. Isolation of metronidazole-resistant Bacteroides fragilis carrying the nimA nitroreductase gene from a patient in Washington State. J Clin Microbiol 2004; 42:4127 - 4129; PMID: 15364999; http://dx.doi.org/10.1128/OCM.42.9.4127-4129.2004
  • Nagy E, Soki J, Urban E, Szoke I, Fodor E, Edwards R. Occurrence of metronidazole and imipenem resistance among Bacteroides fragilis group clinical isolates in Hungary. Acta Biol Hung 2001; 52:271 - 280; PMID: 11426861; http://dx.doi.org/10.1556/ABiol.52.2001.2-3.11
  • Wójcik-Stojek B, Bulanda M, Martirosian G, Heczko P, Meisel-Mikolajczyk F. In vitro antibiotic susceptibility of Bacteroides fragilis strains isolated from excised appendix of patients with phlegmonous or gangrenous appendicitis. Acta Microbiol Pol 2000; 49:171 - 175; PMID: 11093680
  • Dubreuil L, Odou MF. Anaerobic bacteria and antibiotics: What kind of unexpected resistance could I find in my laboratory tomorrow?. Anaerobe 2010; 16:555 - 559; PMID: 20971200; http://dx.doi.org/10.1016/j.anaerobe.2010.10.002
  • Salyers AA, Shoemaker NB, Stevens AM, Li LY. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 1995; 59:579 - 590; PMID: 8531886
  • Löfmark S, Fang H, Hedberg M, Edlund C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 2005; 49:1253 - 1256; PMID: 15728943; http://dx.doi.org/10.1128/AAC.49.3.1253-1256.2005
  • Nakano V, Padilla G, do Valle Marques M, Avila-Campos MJ. Plasmid-related beta-lactamase production in Bacteroides fragilis strains. Res Microbiol 2004; 155:843 - 846; PMID: 15567279; http://dx.doi.org/10.1016/j.resmic.2004.06.011
  • Morgan RM, Macrina FL. bctA: a novel pBF4 gene necessary for conjugal transfer in Bacteroides spp. Microbiology 1997; 143:2155 - 2165; PMID: 9245805; http://dx.doi.org/10.1099/00221287-143-7-2155
  • Smith CJ, Tribble GD, Bayley DP. Genetic elements of Bacteroides species: a moving story. Plasmid 1998; 40:12 - 29; PMID: 9657930; http://dx.doi.org/10.1006/plas.1998.1347
  • Callihan DR, Young FE, Clark VL. Identification of three homology classes of small, cryptic plasmids in intestinal Bacteroides species. Plasmid 1983; 9:17 - 30; PMID: 6300942; http://dx.doi.org/10.1016/0147-619X(83)90028-8
  • Sóki J, Wareham DW, Ratkai C, Aduse-Opoku J, Urban E, Nagy E. Prevalence, nucleotide sequence and expression studies of two proteins of a 5.6kb, class III, Bacteroides plasmid frequently found in clinical isolates from European countries. Plasmid 2010; 63:86 - 97; PMID: 20026106; http://dx.doi.org/10.1016/j.plasmid.2009.12.002
  • Smith CJ, Rollins LA, Parker AC. Nucleotide sequence determination and genetic analysis of the Bacteroides plasmid, pBI143. Plasmid 1995; 34:211 - 222; PMID: 8825374; http://dx.doi.org/10.1006/plas.1995.0007
  • Valentine PJ, Shoemaker NB, Salyers AA. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol 1988; 170:1319 - 1324; PMID: 3343220
  • Novicki TJ, Hecht DW. Characterization and DNA sequence of the mobilization region of pLV22a from Bacteroides fragilis. J Bacteriol 1995; 177:4466 - 4473; PMID: 7635830
  • Hecht DW, Malamy MH. Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. J Bacteriol 1989; 171:3603 - 3608; PMID: 2544548
  • Vedantam G, Novicki TJ, Hecht DW. Bacteroides fragilis transfer factor Tn5520: the smallest bacterial mobilizable transposon containing single integrase and mobilization genes that function in Escherichia coli. J Bacteriol 1999; 181:2564 - 2571; PMID: 10198023
  • Bass KA, Hecht DW. Isolation and characterization of cLV25, a Bacteroides fragilis chromosomal transfer factor resembling multiple Bacteroides sp. mobilizable transposons. J Bacteriol 2002; 184:1895 - 1904; PMID: 11889096; http://dx.doi.org/10.1128/JB.184.7.1895-1904.2002
  • Li LY, Shoemaker NB, Wang GR, Cole SP, Hashimoto MK, Wang J, et al. The mobilization regions of two integrated Bacteroides elements, NBU1 and NBU2, have only a single mobilization protein and may be on a cassette. J Bacteriol 1995; 177:3940 - 3945; PMID: 7608064
  • Smith CJ, Parker AC. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol 1993; 175:2682 - 2691; PMID: 8386723
  • Murphy CG, Malamy MH. Characterization of a “mobilization cassette” in transposon Tn4399 from Bacteroides fragilis. J Bacteriol 1993; 175:5814 - 5823; PMID: 8397185
  • Hecht DW, Thompson JS, Malamy MH. Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc Natl Acad Sci USA 1989; 86:5340 - 5344; PMID: 2546154; http://dx.doi.org/10.1073/pnas.86.14.5340
  • Vedantam G, Knopf S, Hecht DW. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation. Mol Microbiol 2006; 59:288 - 300; PMID: 16359335; http://dx.doi.org/10.1111/j.1365-2958.2005.04934.x
  • Smith CJ, Parker AC. A gene product related to Tral is required for the mobilization of Bacteroides mobilizable transposons and plasmids. Mol Microbiol 1996; 20:741 - 750; PMID: 8793871; http://dx.doi.org/10.1111/j.1365-2958.1996.tb02513.x
  • Vedantam G, Hecht DW. Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol 2002; 184:728 - 738; PMID: 11790742; http://dx.doi.org/10.1128/JB.184.3.728-738.2002
  • Bonheyo G, Graham D, Shoemaker NB, Salyers AA. Transfer region of a bacteroides conjugative transposon, CTnDOT. Plasmid 2001; 45:41 - 51; PMID: 11319931; http://dx.doi.org/10.1006/plas.2000.1495
  • Bonheyo GT, Hund BD, Shoemaker NB, Salyers AA. Transfer region of a Bacteroides conjugative transposon contains regulatory as well as structural genes. Plasmid 2001; 46:202 - 209; PMID: 11735369; http://dx.doi.org/10.1006/plas.2001.1545
  • Li LY, Shoemaker NB, Salyers AA. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 1995; 177:4992 - 4999; PMID: 7665476
  • Nikolich MP, Shoemaker NB, Wang GR, Salyers AA. Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol 1994; 176:6606 - 6612; PMID: 7961412
  • Gupta A, Vlamakis H, Shoemaker N, Salyers AA. A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol 2003; 69:6455 - 6463; PMID: 14602600; http://dx.doi.org/10.1128/AEM.69.11.6455-6463.2003
  • Wang Y, Wang GR, Shelby A, Shoemaker NB, Salyers AA. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol 2003; 69:4595 - 4603; PMID: 12902247; http://dx.doi.org/10.1128/AEM.69.8.4595-4603.2003
  • Bacic M, Parker AC, Stagg J, Whitley HP, Wells WG, Jacob LA, et al. Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J Bacteriol 2005; 187:2858 - 2869; PMID: 15805532; http://dx.doi.org/10.1128/JB.187.8.2858-2869.2005
  • Buckwold SL, Shoemaker NB, Sears CL, Franco AA. Identification and characterization of conjugative transposons CTn86 and CTn9343 in Bacteroides fragilis strains. Appl Environ Microbiol 2007; 73:53 - 63; PMID: 17071793; http://dx.doi.org/10.1128/AEM.01669-06
  • Shoemaker NB, Barber RD, Salyers AA. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol 1989; 171:1294 - 1302; PMID: 2646276
  • Shoemaker NB, Salyers AA. Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal Bacteroides tetracycline resistance elements. J Bacteriol 1988; 170:1651 - 1657; PMID: 2832373
  • Stevens AM, Shoemaker NB, Li LY, Salyers AA. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol 1993; 175:6134 - 6141; PMID: 8407786
  • Rashtchian A, Dubes GR, Booth SJ. Tetracycline-inducible transfer of tetracycline resistance in Bacteroides fragilis in the absence of detectable plasmid DNA. J Bacteriol 1982; 150:141 - 147; PMID: 7061390
  • Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol 2001; 67:3488 - 3495; PMID: 11472924; http://dx.doi.org/10.1128/AEM.67.8.3488-3495.2001
  • Wesslund NA, Wang GR, Song B, Shoemaker NB, Salyers AA. Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST. J Bacteriol 2007; 189:1072 - 1082; PMID: 17122349; http://dx.doi.org/10.1128/JB.01064-06
  • Stevens AM, Sanders JM, Shoemaker NB, Salyers AA. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J Bacteriol 1992; 174:2935 - 2942; PMID: 1569023
  • Cheng Q, Sutanto Y, Shoemaker NB, Gardner JF, Salyers AA. Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon. Mol Microbiol 2001; 41:625 - 632; PMID: 11532130; http://dx.doi.org/10.1046/j.1365-2958.2001.02519.x
  • Park J, Salyers AA. Characterization of the Bacteroides CTnDOT regulatory protein RteC. J Bacteriol 2011; 193:91 - 97; PMID: 21037014; http://dx.doi.org/10.1128/JB.01015-10
  • Moon K, Shoemaker NB, Gardner JF, Salyers AA. Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol 2005; 187:5732 - 5741; PMID: 16077120; http://dx.doi.org/10.1128/JB.187.16.5732-5741.2005
  • Malanowska K, Salyers AA, Gardner JF. Characterization of a conjugative transposon integrase, IntDOT. Mol Microbiol 2006; 60:1228 - 1240; PMID: 16689798; http://dx.doi.org/10.1111/j.1365-2958.2006.05164.x
  • Wood MM, Dichiara JM, Yoneji S, Gardner JF. CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol 2010; 192:3934 - 3943; PMID: 20511494; http://dx.doi.org/10.1128/JB.00351-10
  • Jeters RT, Wang GR, Moon K, Shoemaker NB, Salyers AA. Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol 2009; 191:6374 - 6382; PMID: 19700528; http://dx.doi.org/10.1128/JB.00739-09
  • Ayoubi P, Kilic AO, Vijayakumar MN. Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol 1991; 173:1617 - 1622; PMID: 1847905
  • Bedzyk LA, Shoemaker NB, Young KE, Salyers AA. Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol 1992; 174:166 - 172; PMID: 1309516
  • Wang GR SN, Jeters RT, Salyers AA. CTn12256, a chimeric Bacteroides conjugative transposon that consists of two independently active mobile elements. Plasmid 2011; 66:93 - 105; PMID: 21777612; http://dx.doi.org/10.1016/j.plasmid.2011.06.003
  • Willetts N, Wilkins B. Processing of plasmid DNA during bacterial conjugation. Microbiol Rev 1984; 48:24 - 41; PMID: 6201705
  • Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657 - 687; PMID: 19396961; http://dx.doi.org/10.1111/j.1574-6976.2009.00168.x
  • Lanka E, Wilkins BM. DNA processing reactions in bacterial conjugation. Annu Rev Biochem 1995; 64:141 - 169; PMID: 7574478; http://dx.doi.org/10.1146/annurev.bi.64.070195.001041
  • Pansegrau W, Balzer D, Kruft V, Lurz R, Lanka E. In vitro assembly of relaxosomes at the transfer origin of plasmid RP4. Proc Natl Acad Sci USA 1990; 87:6555 - 6559; PMID: 2168553; http://dx.doi.org/10.1073/pnas.87.17.6555
  • Pansegrau W, Schroder W, Lanka E. Relaxase (TraI) of IncP alpha plasmid RP4 catalyzes a site-specific cleaving-joining reaction of single-stranded DNA. Proc Natl Acad Sci USA 1993; 90:2925 - 2929; PMID: 8385350; http://dx.doi.org/10.1073/pnas.90.7.2925
  • Pansegrau W, Ziegelin G, Lanka E. The origin of conjugative IncP plasmid transfer: interaction with plasmid-encoded products and the nucleotide sequence at the relaxation site. Biochim Biophys Acta 1988; 951:365 - 374; PMID: 2850014
  • Pansegrau W, Lanka E. Mechanisms of initiation and termination reactions in conjugative DNA processing. Independence of tight substrate binding and catalytic activity of relaxase (TraI) of IncPalpha plasmid RP4. J Biol Chem 1996; 271:13068 - 13076; PMID: 8662726; http://dx.doi.org/10.1074/jbc.271.22.13068
  • Larkin C, Datta S, Nezami A, Dohm JA, Schildbach JF. Crystallization and preliminary X-ray characterization of the relaxase domain of F factor TraI. Acta Crystallogr D Biol Crystallogr 2003; 59:1514 - 1516; PMID: 12876370; http://dx.doi.org/10.1107/S0907444903012964
  • Larkin C, Haft RJ, Harley MJ, Traxler B, Schildbach JF. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 2007; 282:33707 - 33713; PMID: 17890221; http://dx.doi.org/10.1074/jbc.M703210200
  • Boer R, Russi S, Guasch A, Lucas M, Blanco AG, Perez-Luque R, et al. Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 2006; 358:857 - 869; PMID: 16540117; http://dx.doi.org/10.1016/j.jmb.2006.02.018
  • Guasch A, Lucas M, Moncalian G, Cabezas M, Perez-Luque R, Gomis-Ruth FX, et al. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nat Struct Biol 2003; 10:1002 - 1010; PMID: 14625590; http://dx.doi.org/10.1038/nsb1017
  • Monzingo AF, Ozburn A, Xia S, Meyer RJ, Robertus JD. The structure of the minimal relaxase domain of MobA at 2.1 A resolution. J Mol Biol 2007; 366:165 - 178; PMID: 17157875; http://dx.doi.org/10.1016/j.jmb.2006.11.031
  • Byrd DR, Matson SW. Nicking by transesterification: the reaction catalysed by a relaxase. Mol Microbiol 1997; 25:1011 - 1022; PMID: 9350859; http://dx.doi.org/10.1046/j.1365-2958.1997.5241885.x
  • Moncalián G, de la Cruz F. DNA binding properties of protein TrwA, a possible structural variant of the Arc repressor superfamily. Biochim Biophys Acta 2004; 1701:15 - 23; PMID: 15450172
  • Lum PL, Rodgers ME, Schildbach JF. TraY DNA recognition of its two F factor binding sites. J Mol Biol 2002; 321:563 - 578; PMID: 12206773; http://dx.doi.org/10.1016/S0022-2836(02)00680-0
  • Peed L, Parker AC, Smith CJ. Genetic and functional analyses of the mob operon on conjugative transposon CTn341 from Bacteroides spp. J Bacteriol 2010; 192:4643 - 4650; PMID: 20639338; http://dx.doi.org/10.1128/JB.00317-10
  • Grahn AM, Haase J, Bamford DH, Lanka E. Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J Bacteriol 2000; 182:1564 - 1574; PMID: 10692361; http://dx.doi.org/10.1128/JB.182.6.1564-1574.2000
  • Samuels AL, Lanka E, Davies JE. Conjugative junctions in RP4-mediated mating of Escherichia coli. J Bacteriol 2000; 182:2709 - 2715; PMID: 10781537; http://dx.doi.org/10.1128/JB.182.10.2709-2715.2000
  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2005; 59:451 - 485; PMID: 16153176; http://dx.doi.org/10.1146/annurev.micro.58.030603.123630
  • Collins RF, Frye SA, Balasingham S, Ford RC, Tonjum T, Derrick JP. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 2005; 280:18923 - 18930; PMID: 15753075; http://dx.doi.org/10.1074/jbc.M411603200
  • Anthony KG, Klimke WA, Manchak J, Frost LS. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 1999; 181:5149 - 5159; PMID: 10464182
  • Li PL, Everhart DM, Farrand SK. Genetic and sequence analysis of the pTiC58 trb locus, encoding a matingpair formation system related to members of the type IV secretion family. J Bacteriol 1998; 180:6164 - 6172; PMID: 9829924
  • Li PL, Hwang I, Miyagi H, True H, Farrand SK. Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 1999; 181:5033 - 5041; PMID: 10438776
  • Haase J, Lurz R, Grahn AM, Bamford DH, Lanka E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J Bacteriol 1995; 177:4779 - 4791; PMID: 7642506
  • Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1 - 15; PMID: 12855161; http://dx.doi.org/10.1016/S0378-1097(03)00430-0
  • Chen I, Christie PJ, Dubnau D. The ins and outs of DNA transfer in bacteria. Science 2005; 310:1456 - 1460; PMID: 16322448; http://dx.doi.org/10.1126/science.1114021
  • Christie PJ. Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 2004; 1694:219 - 234; PMID: 15546668; http://dx.doi.org/10.1016/j.bbamcr.2004.02.013
  • Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G. Structure of a type IV secretion system core complex. Science 2009; 323:266 - 268; PMID: 19131631; http://dx.doi.org/10.1126/science.1166101
  • Gomis-Rüth FX, Sola M, de la Cruz F, Coll M. Coupling factors in macromolecular type-IV secretion machineries. Curr Pharm Des 2004; 10:1551 - 1565; PMID: 15134575; http://dx.doi.org/10.2174/1381612043384817
  • Llosa M, Bolland S, de la Cruz F. Genetic organization of the conjugal DNA processing region of the IncW plasmid R388. J Mol Biol 1994; 235:448 - 464; PMID: 8289274; http://dx.doi.org/10.1006/jmbi.1994.1005
  • Moncalián G, Cabezon E, Alkorta I, Valle M, Moro F, Valpuesta JM, et al. Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 1999; 274:36117 - 36124; PMID: 10593894; http://dx.doi.org/10.1074/jbc.274.51.36117
  • Okamoto S, Toyoda-Yamamoto A, Ito K, Takebe I, Machida Y. Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet 1991; 228:24 - 32; PMID: 1909421; http://dx.doi.org/10.1007/BF00282443
  • Das A, Xie YH. Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 1998; 27:405 - 414; PMID: 9484895; http://dx.doi.org/10.1046/j.1365-2958.1998.00688.x
  • Lee MH, Kosuk N, Bailey J, Traxler B, Manoil C. Analysis of F factor TraD membrane topology by use of gene fusions and trypsin-sensitive insertions. J Bacteriol 1999; 181:6108 - 6113; PMID: 10498725
  • Rabel C, Grahn AM, Lurz R, Lanka E. The VirB4 family of proposed traffic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J Bacteriol 2003; 185:1045 - 1058; PMID: 12533481; http://dx.doi.org/10.1128/JB.185.3.1045-1058.2003
  • Llosa M, Gomis-Ruth FX, Coll M, de la Cruz Fd F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 2002; 45:1 - 8; PMID: 12100543; http://dx.doi.org/10.1046/j.1365-2958.2002.03014.x
  • Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E. The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 2007; 282:25569 - 25576; PMID: 17599913; http://dx.doi.org/10.1074/jbc.M703464200
  • Middleton R, Sjolander K, Krishnamurthy N, Foley J, Zambryski P. Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci USA 2005; 102:1685 - 1690; PMID: 15668378; http://dx.doi.org/10.1073/pnas.0409399102
  • Draper O, Middleton R, Doucleff M, Zambryski PC. Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 2006; 281:37628 - 37635; PMID: 17038312; http://dx.doi.org/10.1074/jbc.M606403200
  • Gomis-Rüth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001; 409:637 - 641; PMID: 11214325; http://dx.doi.org/10.1038/35054586
  • Hamilton CM, Lee H, Li PL, Cook DM, Piper KR, von Bodman SB, et al. TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 2000; 182:1541 - 1548; PMID: 10692358; http://dx.doi.org/10.1128/JB.182.6.1541-1548.2000
  • Sastre JI, Cabezon E, de la Cruz F. The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J Bacteriol 1998; 180:6039 - 6042; PMID: 9811665
  • Lujan SA, Guogas LM, Ragonese H, Matson SW, Redinbo MR. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. Proc Natl Acad Sci USA 2007; 104:12282 - 12287; PMID: 17630285; http://dx.doi.org/10.1073/pnas.0702760104
  • Garcillán-Barcia MP, Jurado P, Gonzalez-Perez B, Moncalian G, Fernandez LA, de la Cruz F. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies. Mol Microbiol 2007; 63:404 - 416; PMID: 17163977; http://dx.doi.org/10.1111/j.1365-2958.2006.05523.x
  • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322:1843 - 1845; PMID: 19095942; http://dx.doi.org/10.1126/science.1165771
  • Filutowicz M, Burgess R, Gamelli RL, Heinemann JA, Kurenbach B, Rakowski SA, et al. Bacterial conjugation-based antimicrobial agents. Plasmid 2008; 60:38 - 44; PMID: 18482767; http://dx.doi.org/10.1016/j.plasmid.2008.03.004
  • Shoemaker NB, Guthrie EP, Salyers AA, Gardner JF. Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J Bacteriol 1985; 162:626 - 632; PMID: 2985540
  • Smith CJ, Macrina FL. Large transmissible clindamycin resistance plasmid in Bacteroides ovatus. J Bacteriol 1984; 158:739 - 741; PMID: 6725207
  • Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775 - 808; PMID: 19946141; http://dx.doi.org/10.1128/MMBR.00023-09
  • Hecht DW, Kos IM, Knopf SE, Vedantam G. Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol 2007; 158:600 - 607; PMID: 17720457; http://dx.doi.org/10.1016/j.resmic.2007.06.004