370
Views
1
CrossRef citations to date
0
Altmetric
Letter to the Editor

Complexes between two GAA Repeats within DNA introduced into Cos-1 cells

Pages 267-271 | Published online: 26 Dec 2012

References

  • Chandok GS, Patel MP, Mirkin SM, Krasilnikova MM. Effects of Friedreich’s ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res 2012; 40:3964 - 74; http://dx.doi.org/10.1093/nar/gks021; PMID: 22262734
  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 2008; 18:30 - 8; http://dx.doi.org/10.1101/gr.7113408; PMID: 18032720
  • Sharma R, Bhatti S, Gomez M, Clark RM, Murray C, Ashizawa T, et al. The GAA triplet-repeat sequence in Friedreich ataxia shows a high level of somatic instability in vivo, with a significant predilection for large contractions. Hum Mol Genet 2002; 11:2175 - 87; http://dx.doi.org/10.1093/hmg/11.18.2175; PMID: 12189170
  • Pandolfo M. The molecular basis of Friedreich ataxia. Adv Exp Med Biol 2002; 516:99 - 118; http://dx.doi.org/10.1007/978-1-4615-0117-6_5; PMID: 12611437
  • Pandolfo M. Friedreich ataxia. Arch Neurol 2008; 65:1296 - 303; http://dx.doi.org/10.1001/archneur.65.10.1296; PMID: 18852343
  • Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271:1423 - 7; http://dx.doi.org/10.1126/science.271.5254.1423; PMID: 8596916
  • De Michele G, Cavalcanti F, Criscuolo C, Pianese L, Monticelli A, Filla A, et al. Parental gender, age at birth and expansion length influence GAA repeat intergenerational instability in the X25 gene: pedigree studies and analysis of sperm from patients with Friedreich’s ataxia. Hum Mol Genet 1998; 7:1901 - 6; http://dx.doi.org/10.1093/hmg/7.12.1901; PMID: 9811933
  • De Biase I, Rasmussen A, Monticelli A, Al-Mahdawi S, Pook M, Cocozza S, et al. Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life. Genomics 2007; 90:1 - 5; http://dx.doi.org/10.1016/j.ygeno.2007.04.001; PMID: 17498922
  • De Biase I, Rasmussen A, Endres D, Al-Mahdawi S, Monticelli A, Cocozza S, et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann Neurol 2007; 61:55 - 60; http://dx.doi.org/10.1002/ana.21052; PMID: 17262846
  • Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, et al. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 2012; 287:29861 - 72; http://dx.doi.org/10.1074/jbc.M112.391961; PMID: 22798143
  • Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC, et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAA⋅TTC triplet repeat instability. Cell Stem Cell 2010; 7:631 - 7; http://dx.doi.org/10.1016/j.stem.2010.09.014; PMID: 21040903
  • Siedlaczck I, Epplen C, Riess O, Epplen JT. Simple repetitive (GAA)n loci in the human genome. Electrophoresis 1993; 14:973 - 7; http://dx.doi.org/10.1002/elps.11501401155; PMID: 7907288
  • Chauhan C, Dash D, Grover D, Rajamani J, Mukerji M. Origin and instability of GAA repeats: insights from Alu elements. J Biomol Struct Dyn 2002; 20:253 - 63; http://dx.doi.org/10.1080/07391102.2002.10506841; PMID: 12354077
  • Gacy AM, Goellner GM, Spiro C, Chen X, Gupta G, Bradbury EM, et al. GAA instability in Friedreich’s Ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell 1998; 1:583 - 93; http://dx.doi.org/10.1016/S1097-2765(00)80058-1; PMID: 9660942
  • Potaman VN, Oussatcheva EA, Lyubchenko YL, Shlyakhtenko LS, Bidichandani SI, Ashizawa T, et al. Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. Nucleic Acids Res 2004; 32:1224 - 31; http://dx.doi.org/10.1093/nar/gkh274; PMID: 14978261
  • Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 1999; 3:465 - 75; http://dx.doi.org/10.1016/S1097-2765(00)80474-8; PMID: 10230399
  • Heidenfelder BL, Makhov AM, Topal MD. Hairpin formation in Friedreich’s ataxia triplet repeat expansion. J Biol Chem 2003; 278:2425 - 31; http://dx.doi.org/10.1074/jbc.M210643200; PMID: 12441336
  • LeProust EM, Pearson CE, Sinden RR, Gao X. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich’s ataxia. J Mol Biol 2000; 302:1063 - 80; http://dx.doi.org/10.1006/jmbi.2000.4073; PMID: 11183775
  • McIvor EI, Polak U, Napierala M. New insights into repeat instability: role of RNA•DNA hybrids. RNA Biol 2010; 7:551 - 8; http://dx.doi.org/10.4161/rna.7.5.12745; PMID: 20729633
  • Chandok GS, Kapoor KK, Brick RM, Sidorova JM, Krasilnikova MM. A distinct first replication cycle of DNA introduced in mammalian cells. Nucleic Acids Res 2011; 39:2103 - 15; http://dx.doi.org/10.1093/nar/gkq903; PMID: 21062817
  • Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 2001; 276:27171 - 7; http://dx.doi.org/10.1074/jbc.M101879200; PMID: 11340071
  • Krasilnikova MM, Mirkin SM. Analysis of triplet repeat replication by two-dimensional gel electrophoresis. Methods Mol Biol 2004; 277:19 - 28; PMID: 15201446
  • Friedman KL, Brewer BJ. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 1995; 262:613 - 27; http://dx.doi.org/10.1016/0076-6879(95)62048-6; PMID: 8594382
  • Frank-Kamenetskii MD, Mirkin SM. Triplex DNA structures. Annu Rev Biochem 1995; 64:65 - 95; http://dx.doi.org/10.1146/annurev.bi.64.070195.000433; PMID: 7574496
  • Lucas I, Hyrien O. Hemicatenanes form upon inhibition of DNA replication. Nucleic Acids Res 2000; 28:2187 - 93; http://dx.doi.org/10.1093/nar/28.10.2187; PMID: 10773090
  • McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction 2003; 125:625 - 33; http://dx.doi.org/10.1530/rep.0.1250625; PMID: 12713425
  • Spinaci M, Seren E, Mattioli M. Maternal chromatin remodeling during maturation and after fertilization in mouse oocytes. Mol Reprod Dev 2004; 69:215 - 21; http://dx.doi.org/10.1002/mrd.20117; PMID: 15293223
  • Imschenetzky M, Puchi M, Gutierrez S, Montecino M. Sea urchin zygote chromatin exhibit an unfolded nucleosomal array during the first S phase. J Cell Biochem 1995; 59:161 - 7; http://dx.doi.org/10.1002/jcb.240590205; PMID: 8904310
  • Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem 2010; 52:145 - 67; http://dx.doi.org/10.1016/S0065-2423(10)52006-7; PMID: 21275343
  • Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70:27 - 56; http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2; PMID: 20920744