727
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Dual R-Smads interplay in the regulation of vertebrate neurogenesis

&
Article: e29529 | Received 07 Mar 2014, Accepted 09 Jun 2014, Published online: 12 Jun 2014

References

  • WuMY, HillCS. Tgf-β superfamily signaling in embryonic development and homeostasis. Dev Cell2009; 16:329 - 43; http://dx.doi.org/10.1016/j.devcel.2009.02.012; PMID: 19289080
  • OshimoriN, FuchsE. The harmonies played by TGF-β in stem cell biology. Cell Stem Cell2012; 11:751 - 64; http://dx.doi.org/10.1016/j.stem.2012.11.001; PMID: 23217421
  • FengXH, DerynckR. Specificity and versatility in tgf-β signaling through Smads. Annu Rev Cell Dev Biol2005; 21:659 - 93; http://dx.doi.org/10.1146/annurev.cellbio.21.022404.142018; PMID: 16212511
  • HeldinCHH, MiyazonoK, ten DijkeP. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature1997; 390:465 - 71; http://dx.doi.org/10.1038/37284; PMID: 9393997
  • MassaguéJ, SeoaneJ, WottonD. Smad transcription factors. Genes Dev2005; 19:2783 - 810; http://dx.doi.org/10.1101/gad.1350705; PMID: 16322555
  • ten DijkeP, HillCS. New insights into TGF-β-Smad signalling. Trends Biochem Sci2004; 29:265 - 73; http://dx.doi.org/10.1016/j.tibs.2004.03.008; PMID: 15130563
  • BrennanJ, LuCC, NorrisDP, RodriguezTA, BeddingtonRS, RobertsonEJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature2001; 411:965 - 9; http://dx.doi.org/10.1038/35082103; PMID: 11418863
  • DessaudE, McMahonAP, BriscoeJ. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development2008; 135:2489 - 503; http://dx.doi.org/10.1242/dev.009324; PMID: 18621990
  • JiaS, WuD, XingC, MengA. Smad2/3 activities are required for induction and patterning of the neuroectoderm in zebrafish. Dev Biol2009; 333:273 - 84; http://dx.doi.org/10.1016/j.ydbio.2009.06.037; PMID: 19580801
  • JiaS, RenZ, LiX, ZhengY, MengA. smad2 and smad3 are required for mesendoderm induction by transforming growth factor-beta/nodal signals in zebrafish. J Biol Chem2008; 283:2418 - 26; http://dx.doi.org/10.1074/jbc.M707578200; PMID: 18025082
  • LiuA, NiswanderLA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci2005; 6:945 - 54; http://dx.doi.org/10.1038/nrn1805; PMID: 16340955
  • LiemKFJJr., TremmlG, JessellTM. A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell1997; 91:127 - 38; http://dx.doi.org/10.1016/S0092-8674(01)80015-5; PMID: 9335341
  • CooleyJR, YatskievychTA, AntinPB. Embryonic expression of the transforming growth factor β ligand and receptor genes in chicken. Dev Dyn2014; 243:497 - 508; http://dx.doi.org/10.1002/dvdy.24085; PMID: 24166734
  • TimmerJ, ChesnuttC, NiswanderL. The activin signaling pathway promotes differentiation of dI3 interneurons in the spinal neural tube. Dev Biol2005; 285:1 - 10; http://dx.doi.org/10.1016/j.ydbio.2005.05.039; PMID: 16039645
  • SeoaneJ, LeHV, ShenL, AndersonSA, MassaguéJ. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell2004; 117:211 - 23; http://dx.doi.org/10.1016/S0092-8674(04)00298-3; PMID: 15084259
  • FalkS, WurdakH, IttnerLM, IlleF, SumaraG, SchmidMT, DraganovaK, LangKS, ParatoreC, LeveenP, et al. Brain area-specific effect of TGF-β signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell2008; 2:472 - 83; http://dx.doi.org/10.1016/j.stem.2008.03.006; PMID: 18462697
  • MisumiS, KimTSS, JungCG, MasudaT, UrakawaS, IsobeY, FuruyamaF, NishinoH, HidaH. Enhanced neurogenesis from neural progenitor cells with G1/S-phase cell cycle arrest is mediated by transforming growth factor β1. Eur J Neurosci2008; 28:1049 - 59; http://dx.doi.org/10.1111/j.1460-9568.2008.06420.x; PMID: 18783370
  • GomesFC, SousaVdeO, RomãoL. Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci2005; 23:413 - 24; http://dx.doi.org/10.1016/j.ijdevneu.2005.04.001; PMID: 15936920
  • FarkasLM, DünkerN, RoussaE, UnsickerK, KrieglsteinK. Transforming growth factor-β(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci2003; 23:5178 - 86; PMID: 12832542
  • García-CampmanyL, MartíE. The TGFbeta intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. Development2007; 134:65 - 75; http://dx.doi.org/10.1242/dev.02702; PMID: 17138664
  • EstarásC, AkizuN, GarcíaA, BeltránS, de la CruzX, Martínez-BalbásMA. Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development2012; 139:2681 - 91; http://dx.doi.org/10.1242/dev.078345; PMID: 22782721
  • UeberhamU, LangeP, UeberhamE, BrücknerMK, Hartlage-RübsamenM, PannickeT, RohnS, CrossM, ArendtT. Smad2 isoforms are differentially expressed during mouse brain development and aging. Int J Dev Neurosci2009; 27:501 - 10; http://dx.doi.org/10.1016/j.ijdevneu.2009.04.001; PMID: 19375497
  • WangL, NomuraM, GotoY, TanakaK, SakamotoR, AbeI, SakamotoS, ShibataA, EncisoPL, AdachiM, et al. Smad2 protein disruption in the central nervous system leads to aberrant cerebellar development and early postnatal ataxia in mice. J Biol Chem2011; 286:18766 - 74; http://dx.doi.org/10.1074/jbc.M111.223271; PMID: 21464123
  • PinedaJR, DaynacM, ChicheporticheA, Cebrian-SillaA, Sii FeliceK, Garcia-VerdugoJM, BoussinFD, MouthonMA. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med2013; 5:548 - 62; http://dx.doi.org/10.1002/emmm.201202197; PMID: 23526803
  • BrionneTC, TesseurI, MasliahE, Wyss-CorayT. Loss of TGF-β 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron2003; 40:1133 - 45; http://dx.doi.org/10.1016/S0896-6273(03)00766-9; PMID: 14687548
  • StegmüllerJ, HuynhMA, YuanZ, KonishiY, BonniA. TGFbeta-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis. J Neurosci2008; 28:1961 - 9; http://dx.doi.org/10.1523/JNEUROSCI.3061-07.2008; PMID: 18287512
  • ZhuQ, KimYH, WangD, OhSP, LuoK. SnoN facilitates ALK1-Smad1/5 signaling during embryonic angiogenesis. J Cell Biol2013; 202:937 - 50; http://dx.doi.org/10.1083/jcb.201208113; PMID: 24019535
  • ZhuQ, LuoK. SnoN in regulation of embryonic development and tissue morphogenesis. FEBS Lett2012; 586:1971 - 6; http://dx.doi.org/10.1016/j.febslet.2012.03.005; PMID: 22710172
  • ZhuQ, Pearson-WhiteS, LuoK. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells. Mol Cell Biol2005; 25:10731 - 44; http://dx.doi.org/10.1128/MCB.25.24.10731-10744.2005; PMID: 16314499
  • de Sousa LopesSM, CarvalhoRL, van den DriescheS, GoumansMJ, ten DijkeP, MummeryCL. Distribution of phosphorylated Smad2 identifies target tissues of TGF β ligands in mouse development. Gene Expr Patterns2003; 3:355 - 60; http://dx.doi.org/10.1016/S1567-133X(03)00029-2; PMID: 12799085
  • MíguezDG, Gil-GuiñónE, PonsS, MartíE. Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. J Cell Sci2013; 126:5335 - 43; http://dx.doi.org/10.1242/jcs.130435; PMID: 24105267
  • BrownKA, PietenpolJA, MosesHL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem2007; 101:9 - 33; http://dx.doi.org/10.1002/jcb.21255; PMID: 17340614
  • DennlerS, HuetS, GauthierJM. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene1999; 18:1643 - 8; http://dx.doi.org/10.1038/sj.onc.1202729; PMID: 10102636
  • DunnNR, KoonceCH, AndersonDC, IslamA, BikoffEK, RobertsonEJ. Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev2005; 19:152 - 63; http://dx.doi.org/10.1101/gad.1243205; PMID: 15630024
  • AshcroftGS, YangX, GlickAB, WeinsteinM, LetterioJL, MizelDE, AnzanoM, Greenwell-WildT, WahlSM, DengC, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol1999; 1:260 - 6; http://dx.doi.org/10.1038/12971; PMID: 10559937
  • MorikawaM, KoinumaD, MiyazonoK, HeldinCH. Genome-wide mechanisms of Smad binding. Oncogene2013; 32:1609 - 15; http://dx.doi.org/10.1038/onc.2012.191; PMID: 22614010
  • DerynckR, ZhangY, FengXH. Smads: transcriptional activators of TGF-β responses. Cell1998; 95:737 - 40; http://dx.doi.org/10.1016/S0092-8674(00)81696-7; PMID: 9865691
  • MullenAC, OrlandoDA, NewmanJJ, LovénJ, KumarRM, BilodeauS, ReddyJ, GuentherMG, DeKoterRP, YoungRA. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell2011; 147:565 - 76; http://dx.doi.org/10.1016/j.cell.2011.08.050; PMID: 22036565
  • AkhurstRJ, HataA. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov2012; 11:790 - 811; http://dx.doi.org/10.1038/nrd3810; PMID: 23000686
  • MassaguéJ. TGFbeta in Cancer. Cell2008; 134:215 - 30; http://dx.doi.org/10.1016/j.cell.2008.07.001; PMID: 18662538
  • LabbéE, SilvestriC, HoodlessPA, WranaJL, AttisanoL. Smad2 and Smad3 positively and negatively regulate TGF β-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell1998; 2:109 - 20; http://dx.doi.org/10.1016/S1097-2765(00)80119-7; PMID: 9702197
  • YangYCC, PiekE, ZavadilJ, LiangD, XieD, HeyerJ, PavlidisP, KucherlapatiR, RobertsAB, BöttingerEP. Hierarchical model of gene regulation by transforming growth factor β. Proc Natl Acad Sci U S A2003; 100:10269 - 74; http://dx.doi.org/10.1073/pnas.1834070100; PMID: 12930890
  • SchmiererB, TournierAL, BatesPA, HillCS. Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. Proc Natl Acad Sci U S A2008; 105:6608 - 13; http://dx.doi.org/10.1073/pnas.0710134105; PMID: 18443295
  • NicklasD, SaizL. Characterization of negative feedback network motifs in the TGF-β signaling pathway. PLoS One2013; 8:e83531; http://dx.doi.org/10.1371/journal.pone.0083531; PMID: 24386222
  • CellièreG, FengosG, HervéM, IberD. Plasticity of TGF-β signaling. BMC Syst Biol2011; 5:184; http://dx.doi.org/10.1186/1752-0509-5-184; PMID: 22051045
  • ZiZ, ChapnickDA, LiuX. Dynamics of TGF-β/Smad signaling. FEBS Lett2012; 586:1921 - 8; http://dx.doi.org/10.1016/j.febslet.2012.03.063; PMID: 22710166
  • InmanGJ, NicolásFJ, HillCS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell2002; 10:283 - 94; http://dx.doi.org/10.1016/S1097-2765(02)00585-3; PMID: 12191474
  • Saritas-YildirimB, SilvaEM. The role of targeted protein degradation in early neural development. Genesis2014; 52:287 - 99; http://dx.doi.org/10.1002/dvg.22771; PMID: 24623518
  • MíguezDG. Network nonlinearities in drug treatment. Interdiscip Sci2013; 5:85 - 94; http://dx.doi.org/10.1007/s12539-013-0165-x; PMID: 23740389
  • LevyL, HowellM, DasD, HarkinS, EpiskopouV, HillCS. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol2007; 27:6068 - 83; http://dx.doi.org/10.1128/MCB.00664-07; PMID: 17591695
  • OltvaiZN, BarabásiAL. Systems biology. Life’s complexity pyramid. Science2002; 298:763 - 4; http://dx.doi.org/10.1126/science.1078563; PMID: 12399572
  • KichevaA, CohenM, BriscoeJ. Developmental pattern formation: insights from physics and biology. Science2012; 338:210 - 2; http://dx.doi.org/10.1126/science.1225182; PMID: 23066071
  • Formosa-JordanP, IbañesM, AresS, FradeJM. Regulation of neuronal differentiation at the neurogenic wavefront. Development2012; 139:2321 - 9; http://dx.doi.org/10.1242/dev.076406; PMID: 22669822
  • KaernM, MíguezDG, MuñuzuriAP, MenzingerM. Control of chemical pattern formation by a clock-and-wavefront type mechanism. Biophys Chem2004; 110:231 - 8; http://dx.doi.org/10.1016/j.bpc.2004.02.006; PMID: 15228959
  • EconomouAD, OhazamaA, PorntaveetusT, SharpePT, KondoS, BassonMA, Gritli-LindeA, CobourneMT, GreenJB. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat Genet2012; 44:348 - 51; http://dx.doi.org/10.1038/ng.1090; PMID: 22344222
  • ShethR, MarconL, BastidaMF, JuncoM, QuintanaL, DahnR, KmitaM, SharpeJ, RosMA. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science2012; 338:1476 - 80; http://dx.doi.org/10.1126/science.1226804; PMID: 23239739
  • MíguezDG, MuñuzuriAP. On the orientation of stripes in fish skin patterning. Biophys Chem2006; 124:161 - 7; http://dx.doi.org/10.1016/j.bpc.2006.06.014; PMID: 16844282
  • MíguezDG. The role of asymmetric binding in ligand-receptor systems with 1:2 interaction ratio. Biophys Chem2010; 148:74 - 81; http://dx.doi.org/10.1016/j.bpc.2010.02.012; PMID: 20332059
  • Doldán-MartelliV, GuantesR, MíguezDG. A mathematical model for the rational design of chimeric ligands in selective drug therapies. CPT Pharmacometrics Syst Pharmacol2013; 2:e26; http://dx.doi.org/10.1038/psp.2013.2; PMID: 23887616
  • Ruiz-HerreroT, EstradaJ, GuantesR, MiguezDG. A tunable coarse-grained model for ligand-receptor interaction. PLoS Comput Biol2013; 9:e1003274; http://dx.doi.org/10.1371/journal.pcbi.1003274; PMID: 24244115