796
Views
6
CrossRef citations to date
0
Altmetric
Extra View

Fusing telomeres with RNF8

Pages 143-149 | Published online: 01 Mar 2012

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010; 31:9 - 18; http://dx.doi.org/10.1093/carcin/bgp268; PMID: 19887512
  • Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27:585 - 610; http://dx.doi.org/10.1146/annurev-cellbio-092910-154234; PMID: 21801013
  • de Lange T. How telomeres solve the end-protection problem. Science 2009; 326:948 - 52; http://dx.doi.org/10.1126/science.1170633; PMID: 19965504
  • de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 2010; 75:167 - 77; http://dx.doi.org/10.1101/sqb.2010.75.017; PMID: 21209389
  • O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010; 11:171 - 81; PMID: 20125188
  • Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 2004; 14:2302 - 8; http://dx.doi.org/10.1016/j.cub.2004.12.025; PMID: 15620660
  • Jacobs JJ, de Lange T. p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 2005; 4:1364 - 8; http://dx.doi.org/10.4161/cc.4.10.2104; PMID: 16177573
  • Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet 2007; 8:299 - 309; http://dx.doi.org/10.1038/nrg2047; PMID: 17363977
  • Lejnine S, Makarov VL, Langmore JP. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc Natl Acad Sci U S A 1995; 92:2393 - 7; http://dx.doi.org/10.1073/pnas.92.6.2393; PMID: 7892278
  • Makarov VL, Lejnine S, Bedoyan J, Langmore JP. Nucleosomal organization of telomere-specific chromatin in rat. Cell 1993; 73:775 - 87; http://dx.doi.org/10.1016/0092-8674(93)90256-P; PMID: 8500170
  • Tommerup H, Dousmanis A, de Lange T. Unusual chromatin in human telomeres. Mol Cell Biol 1994; 14:5777 - 85; PMID: 8065312
  • Pisano S, Marchioni E, Galati A, Mechelli R, Savino M, Cacchione S. Telomeric nucleosomes are intrinsically mobile. J Mol Biol 2007; 369:1153 - 62; http://dx.doi.org/10.1016/j.jmb.2007.04.027; PMID: 17498745
  • Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E. Structural identity of telomeric complexes. FEBS Lett 2010; 584:3785 - 99; http://dx.doi.org/10.1016/j.febslet.2010.08.004; PMID: 20696167
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458 - 60; http://dx.doi.org/10.1038/345458a0; PMID: 2342578
  • Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25:409 - 33; http://dx.doi.org/10.1101/gad.2021311; PMID: 21363960
  • Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13:1161 - 9; http://dx.doi.org/10.1038/ncb2344; PMID: 21968989
  • Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13:1549 - 56; http://dx.doi.org/10.1016/S0960-9822(03)00542-6; PMID: 12956959
  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194 - 8; http://dx.doi.org/10.1038/nature02118; PMID: 14608368
  • van Attikum H, Fritsch O, Hohn B, Gasser SM. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 2004; 119:777 - 88; http://dx.doi.org/10.1016/j.cell.2004.11.033; PMID: 15607975
  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 2005; 438:379 - 83; http://dx.doi.org/10.1038/nature04148; PMID: 16292314
  • Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG, McNally JG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 2006; 172:823 - 34; http://dx.doi.org/10.1083/jcb.200510015; PMID: 16520385
  • Berkovich E, Monnat RJ Jr., Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007; 9:683 - 90; http://dx.doi.org/10.1038/ncb1599; PMID: 17486112
  • Wu P, de Lange T. No overt nucleosome eviction at deprotected telomeres. Mol Cell Biol 2008; 28:5724 - 35; http://dx.doi.org/10.1128/MCB.01764-07; PMID: 18625717
  • Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466:941 - 6; http://dx.doi.org/10.1038/nature09297; PMID: 20725033
  • Peuscher MH, Jacobs JJ. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat Cell Biol 2011; 13:1139 - 45; http://dx.doi.org/10.1038/ncb2326; PMID: 21857671
  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007; 131:901 - 14; http://dx.doi.org/10.1016/j.cell.2007.09.041; PMID: 18001825
  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007; 131:887 - 900; http://dx.doi.org/10.1016/j.cell.2007.09.040; PMID: 18001824
  • Rai R, Li JM, Zheng H, Lok GT, Deng Y, Huen MS, et al. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol 2011; 18:1400 - 7; http://dx.doi.org/10.1038/nsmb.2172; PMID: 22101936
  • Dimitrova N, Chen YC, Spector DL, de Lange T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 2008; 456:524 - 8; http://dx.doi.org/10.1038/nature07433; PMID: 18931659
  • Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT, et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 2008; 456:529 - 33; http://dx.doi.org/10.1038/nature07476; PMID: 18931658
  • Acs K, Luijsterburg MS, Ackermann L, Salomons FA, Hoppe T, Dantuma NP. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat Struct Mol Biol 2011; 18:1345 - 50; http://dx.doi.org/10.1038/nsmb.2188; PMID: 22120668
  • Noon AT, Shibata A, Rief N, Löbrich M, Stewart GS, Jeggo PA, et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 2010; 12:177 - 84; http://dx.doi.org/10.1038/ncb2017; PMID: 20081839
  • Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, et al. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 2011; 18:761 - 8; http://dx.doi.org/10.1038/nsmb.2078; PMID: 21706008
  • Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448:1068 - 71; http://dx.doi.org/10.1038/nature06065; PMID: 17687332
  • Konishi A, de Lange T. Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes Dev 2008; 22:1221 - 30; http://dx.doi.org/10.1101/gad.1634008; PMID: 18451109
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31:167 - 77; http://dx.doi.org/10.1016/j.molcel.2008.05.017; PMID: 18657500
  • Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 2011; 41:529 - 42; http://dx.doi.org/10.1016/j.molcel.2011.02.015; PMID: 21362549
  • Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 2011; 41:515 - 28; http://dx.doi.org/10.1016/j.molcel.2011.02.002; PMID: 21362548
  • Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 2011; 7:113 - 9; http://dx.doi.org/10.1038/nchembio.501; PMID: 21196936
  • Wu J, Huen MS, Lu LY, Ye L, Dou Y, Ljungman M, et al. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol Cell Biol 2009; 29:849 - 60; http://dx.doi.org/10.1128/MCB.01302-08; PMID: 19015238
  • Santos MA, Huen MS, Jankovic M, Chen HT, López-Contreras AJ, Klein IA, et al. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J Exp Med 2010; 207:973 - 81; http://dx.doi.org/10.1084/jem.20092308; PMID: 20385748
  • Li L, Halaby MJ, Hakem A, Cardoso R, El Ghamrasni S, Harding S, et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med 2010; 207:983 - 97; http://dx.doi.org/10.1084/jem.20092437; PMID: 20385750
  • Chang W, Dynek JN, Smith S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 2003; 17:1328 - 33; http://dx.doi.org/10.1101/gad.1077103; PMID: 12782650
  • Lee TH, Perrem K, Harper JW, Lu KP, Zhou XZ. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 2006; 281:759 - 68; http://dx.doi.org/10.1074/jbc.M509855200; PMID: 16275645
  • Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 2009; 35:352 - 64; http://dx.doi.org/10.1016/j.molcel.2009.06.015; PMID: 19683498
  • Fujita K, Horikawa I, Mondal AM, Jenkins LM, Appella E, Vojtesek B, et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat Cell Biol 2010; 12:1205 - 12; http://dx.doi.org/10.1038/ncb2123; PMID: 21057505
  • Bhanot M, Smith S. TIN2 stability is regulated by the E3 ligase Siah2. Mol Cell Biol 2012; 32:376 - 84; http://dx.doi.org/10.1128/MCB.06227-11; PMID: 22064479
  • Verdun RE, Karlseder J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 2006; 127:709 - 20; http://dx.doi.org/10.1016/j.cell.2006.09.034; PMID: 17110331
  • Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 2010; 11:319 - 30; http://dx.doi.org/10.1038/nrg2763; PMID: 20351727

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.