1,074
Views
35
CrossRef citations to date
0
Altmetric
Research Paper

Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2

, , &
Pages 349-358 | Received 16 Mar 2012, Accepted 22 May 2012, Published online: 12 Jun 2012

References

  • Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 2010; 428:133 - 45; http://dx.doi.org/10.1042/BJ20100158; PMID: 20462400
  • Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11:861 - 71; http://dx.doi.org/10.1038/nrm3011; PMID: 21102611
  • Choi H-K, Choi K-C, Yoo J-Y, Song M, Ko SJ, Kim CH, et al. Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell 2011; 43:203 - 16; http://dx.doi.org/10.1016/j.molcel.2011.05.027; PMID: 21777810
  • Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 2008; 134:1961–1971, 1971.e1–4.
  • Yukita A, Michiue T, Danno H, Asashima M. XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development. Dev Dyn 2007; 236:2757 - 66; http://dx.doi.org/10.1002/dvdy.21297; PMID: 17823940
  • Ihara M, Yamamoto H, Kikuchi A. SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4. Mol Cell Biol 2005; 25:3506 - 18; http://dx.doi.org/10.1128/MCB.25.9.3506-3518.2005; PMID: 15831457
  • Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, et al. PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 2004; 173:6189 - 99; PMID: 15528356
  • Yukita A, Michiue T, Fukui A, Sakurai K, Yamamoto H, Ihara M, et al. XSENP1, a novel sumo-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/beta-catenin signalling. Genes Cells 2004; 9:723 - 36; http://dx.doi.org/10.1111/j.1356-9597.2004.00757.x; PMID: 15298680
  • Yang Y, Tse AK-W, Li P, Ma Q, Xiang S, Nicosia SV, et al. Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene 2011; 30:2207 - 18; http://dx.doi.org/10.1038/onc.2010.600; PMID: 21242980
  • Bawa-Khalfe T, Cheng J, Lin S-H, Ittmann MM, Yeh ETH. SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J Biol Chem 2010; 285:25859 - 66; http://dx.doi.org/10.1074/jbc.M110.134874; PMID: 20551310
  • Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, et al. Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem 2010; 285:36682 - 8; http://dx.doi.org/10.1074/jbc.M110.164236; PMID: 20841360
  • Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci 2007; 32:286 - 95; http://dx.doi.org/10.1016/j.tibs.2007.05.002; PMID: 17499995
  • Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275:6252 - 8; http://dx.doi.org/10.1074/jbc.275.9.6252; PMID: 10692421
  • Ayaydin F, Dasso M. Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 2004; 15:5208 - 18; http://dx.doi.org/10.1091/mbc.E04-07-0589; PMID: 15456902
  • Gan-Erdene T, Nagamalleswari K, Yin L, Wu K, Pan Z-Q, Wilkinson KD. Identification and characterization of DEN1, a deneddylase of the ULP family. J Biol Chem 2003; 278:28892 - 900; http://dx.doi.org/10.1074/jbc.M302890200; PMID: 12759362
  • Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P, Chen A, et al. DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J Biol Chem 2003; 278:28882 - 91; http://dx.doi.org/10.1074/jbc.M302888200; PMID: 12759363
  • Shin EJ, Shin HM, Nam E, Kim WS, Kim J-H, Oh B-H, et al. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep 2012; 13:339 - 46; http://dx.doi.org/10.1038/embor.2012.3; PMID: 22370726
  • Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 2005; 25:5171 - 82; http://dx.doi.org/10.1128/MCB.25.12.5171-5182.2005; PMID: 15923632
  • Cheng J, Kang X, Zhang S, Yeh ETH. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131:584 - 95; http://dx.doi.org/10.1016/j.cell.2007.08.045; PMID: 17981124
  • Chiu S-Y, Asai N, Costantini F, Hsu W. SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 2008; 6:e310; http://dx.doi.org/10.1371/journal.pbio.0060310; PMID: 19090619
  • Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38:191 - 201; http://dx.doi.org/10.1016/j.molcel.2010.03.005; PMID: 20417598
  • Palancade B, Doye V. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties?. Trends Cell Biol 2008; 18:174 - 83; http://dx.doi.org/10.1016/j.tcb.2008.02.001; PMID: 18313922
  • Hang J, Dasso M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 2002; 277:19961 - 6; http://dx.doi.org/10.1074/jbc.M201799200; PMID: 11896061
  • Goeres J, Chan P-K, Mukhopadhyay D, Zhang H, Raught B, Matunis MJ. The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex. Mol Biol Cell 2011; 22:4868 - 82; http://dx.doi.org/10.1091/mbc.E10-12-0953; PMID: 22031293
  • Li S-J, Hochstrasser M. The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 2003; 160:1069 - 81; http://dx.doi.org/10.1083/jcb.200212052; PMID: 12654900
  • Zhang H, Saitoh H, Matunis MJ. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 2002; 22:6498 - 508; http://dx.doi.org/10.1128/MCB.22.18.6498-6508.2002; PMID: 12192048
  • Panse VG, Küster B, Gerstberger T, Hurt E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 2003; 5:21 - 7; http://dx.doi.org/10.1038/ncb893; PMID: 12471376
  • Makhnevych T, Ptak C, Lusk CP, Aitchison JD, Wozniak RW. The role of karyopherins in the regulated sumoylation of septins. J Cell Biol 2007; 177:39 - 49; http://dx.doi.org/10.1083/jcb.200608066; PMID: 17403926
  • Bailey D, O’Hare P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 2004; 279:692 - 703; http://dx.doi.org/10.1074/jbc.M306195200; PMID: 14563852
  • Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 2008; 7:282 - 9; http://dx.doi.org/10.1074/mcp.M700342-MCP200; PMID: 17951627
  • Shen LN, Dong C, Liu H, Naismith JH, Hay RT. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J 2006; 397:279 - 88; http://dx.doi.org/10.1042/BJ20052030; PMID: 16553580
  • Reverter D, Lima CD. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 2004; 12:1519 - 31; http://dx.doi.org/10.1016/j.str.2004.05.023; PMID: 15296745
  • Ban R, Nishida T, Urano T. Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes Cells 2011; 16:652 - 69; http://dx.doi.org/10.1111/j.1365-2443.2011.01521.x; PMID: 21554500
  • Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, et al. Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J 2010; 430:335 - 44; http://dx.doi.org/10.1042/BJ20100504; PMID: 20590526
  • Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654 - 9; http://dx.doi.org/10.1074/jbc.M009476200; PMID: 11124955
  • Moroianu J, Blobel G, Radu A. RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153. Proc Natl Acad Sci U S A 1997; 94:9699 - 704; http://dx.doi.org/10.1073/pnas.94.18.9699; PMID: 9275187
  • David-Watine B. Silencing nuclear pore protein Tpr elicits a senescent-like phenotype in cancer cells. PLoS One 2011; 6:e22423; http://dx.doi.org/10.1371/journal.pone.0022423; PMID: 21811608
  • Sistla S, Pang JV, Wang CX, Balasundaram D. Multiple conserved domains of the nucleoporin Nup124p and its orthologs Nup1p and Nup153 are critical for nuclear import and activity of the fission yeast Tf1 retrotransposon. Mol Biol Cell 2007; 18:3692 - 708; http://dx.doi.org/10.1091/mbc.E06-12-1062; PMID: 17615301
  • Pyhtila B, Rexach M. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J Biol Chem 2003; 278:42699 - 709; http://dx.doi.org/10.1074/jbc.M307135200; PMID: 12917401
  • Higa MM, Alam SL, Sundquist WI, Ullman KS. Molecular characterization of the Ran-binding zinc finger domain of Nup153. J Biol Chem 2007; 282:17090 - 100; http://dx.doi.org/10.1074/jbc.M702715200; PMID: 17426026
  • Partridge JR, Schwartz TU. Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. J Mol Biol 2009; 391:375 - 89; http://dx.doi.org/10.1016/j.jmb.2009.06.011; PMID: 19505478
  • Schrader N, Koerner C, Koessmeier K, Bangert J-A, Wittinghofer A, Stoll R, et al. The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 2008; 16:1116 - 25; http://dx.doi.org/10.1016/j.str.2008.03.014; PMID: 18611384
  • Fahrenkrog B, Maco B, Fager AM, Köser J, Sauder U, Ullman KS, et al. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J Struct Biol 2002; 140:254 - 67; http://dx.doi.org/10.1016/S1047-8477(02)00524-5; PMID: 12490173
  • Lim RYH, Fahrenkrog B, Köser J, Schwarz-Herion K, Deng J, Aebi U. Nanomechanical basis of selective gating by the nuclear pore complex. Science 2007; 318:640 - 3; http://dx.doi.org/10.1126/science.1145980; PMID: 17916694
  • Zhang Y-Q, Sarge KD. Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J Cell Biol 2008; 182:35 - 9; http://dx.doi.org/10.1083/jcb.200712124; PMID: 18606848
  • Matafora V, D’Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 2009; 8:2243 - 55; http://dx.doi.org/10.1074/mcp.M900079-MCP200; PMID: 19596686
  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, et al. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2:ra24; http://dx.doi.org/10.1126/scisignal.2000282; PMID: 19471022
  • Itahana Y, Yeh ETH, Zhang Y. Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 2006; 26:4675 - 89; http://dx.doi.org/10.1128/MCB.01830-05; PMID: 16738331
  • Zhao X, Wu C-Y, Blobel G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J Cell Biol 2004; 167:605 - 11; http://dx.doi.org/10.1083/jcb.200405168; PMID: 15557117
  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 2004; 116:63 - 73; http://dx.doi.org/10.1016/S0092-8674(03)01026-2; PMID: 14718167
  • Lewis A, Felberbaum R, Hochstrasser M. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J Cell Biol 2007; 178:813 - 27; http://dx.doi.org/10.1083/jcb.200702154; PMID: 17724121
  • Palancade B, Liu X, Garcia-Rubio M, Aguilera A, Zhao X, Doye V. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol Biol Cell 2007; 18:2912 - 23; http://dx.doi.org/10.1091/mbc.E07-02-0123; PMID: 17538013
  • Nishida T, Tanaka H, Yasuda H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 2000; 267:6423 - 7; http://dx.doi.org/10.1046/j.1432-1327.2000.01729.x; PMID: 11029585
  • Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 1999; 112:2253 - 64; PMID: 10362555
  • Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, et al. Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 2008; 183:589 - 95; http://dx.doi.org/10.1083/jcb.200807185; PMID: 19015314
  • Li X, Luo Y, Yu L, Lin Y, Luo D, Zhang H, et al. SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death Differ 2008; 15:739 - 50; http://dx.doi.org/10.1038/sj.cdd.4402303; PMID: 18219322
  • Zhu S, Goeres J, Sixt KM, Békés M, Zhang X-D, Salvesen GS, et al. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol Cell 2009; 33:570 - 80; http://dx.doi.org/10.1016/j.molcel.2009.02.008; PMID: 19285941
  • Mackay DR, Elgort SW, Ullman KS. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol Biol Cell 2009; 20:1652 - 60; http://dx.doi.org/10.1091/mbc.E08-08-0883; PMID: 19158386