869
Views
5
CrossRef citations to date
0
Altmetric
Extra View

The new nucleoporin

Regulator of transcriptional repression and beyond

&
Pages 508-515 | Published online: 09 Oct 2012

References

  • Cosma MP. Ordered recruitment: gene-specific mechanism of transcription activation. Mol Cell 2002; 10:227 - 36; http://dx.doi.org/10.1016/S1097-2765(02)00604-4; PMID: 12191469
  • Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002; 108:439 - 51; http://dx.doi.org/10.1016/S0092-8674(02)00655-4; PMID: 11909516
  • Krishnamurthy S, Hampsey M. Eukaryotic transcription initiation. Curr Biol 2009; 19:R153 - 6; http://dx.doi.org/10.1016/j.cub.2008.11.052; PMID: 19243687
  • Weake VM, Workman JL. Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 2010; 11:426 - 37; http://dx.doi.org/10.1038/nrg2781; PMID: 20421872
  • Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2011; 189:705 - 36; http://dx.doi.org/10.1534/genetics.111.127019; PMID: 22084422
  • Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761 - 72; http://dx.doi.org/10.1038/nrg2901; PMID: 20940737
  • Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557 - 67; http://dx.doi.org/10.1038/nrm1981; PMID: 16936696
  • Bryant GO, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 2003; 11:1301 - 9; http://dx.doi.org/10.1016/S1097-2765(03)00144-8; PMID: 12769853
  • Carey MF, Peterson CL, Smale ST. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, & Techniques. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2009.
  • Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002; 416:499 - 506; http://dx.doi.org/10.1038/416499a; PMID: 11932736
  • Pandit S, Wang D, Fu XD. Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008; 20:260 - 5; http://dx.doi.org/10.1016/j.ceb.2008.03.001; PMID: 18436438
  • Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA processing with transcription. Cell 2002; 108:501 - 12; http://dx.doi.org/10.1016/S0092-8674(02)00617-7; PMID: 11909521
  • Sarma NJ, Haley TM, Barbara KE, Buford TD, Willis KA, Santangelo GM. Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 2007; 175:1127 - 35; http://dx.doi.org/10.1534/genetics.106.068932; PMID: 17237508
  • Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 2010; 140:372 - 83; http://dx.doi.org/10.1016/j.cell.2009.12.054; PMID: 20144761
  • Kehat I, Accornero F, Aronow BJ, Molkentin JD. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Biol 2011; 193:21 - 9; http://dx.doi.org/10.1083/jcb.201101046; PMID: 21464227
  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 2004; 117:427 - 39; http://dx.doi.org/10.1016/S0092-8674(04)00448-9; PMID: 15137937
  • Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, et al. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J Cell Biol 2005; 171:955 - 65; http://dx.doi.org/10.1083/jcb.200509061; PMID: 16365162
  • Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 2008; 22:627 - 39; http://dx.doi.org/10.1101/gad.1632708; PMID: 18316479
  • Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 2010; 6:e1000846; http://dx.doi.org/10.1371/journal.pgen.1000846; PMID: 20174442
  • Kalverda B, Pickersgill H, Shloma VV, Fornerod M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 2010; 140:360 - 71; http://dx.doi.org/10.1016/j.cell.2010.01.011; PMID: 20144760
  • Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 2008; 4:e1000039; http://dx.doi.org/10.1371/journal.pgen.1000039; PMID: 18369458
  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 2006; 21:811 - 23; http://dx.doi.org/10.1016/j.molcel.2006.02.007; PMID: 16543150
  • Watson ML. Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol 1959; 6:147 - 56; http://dx.doi.org/10.1083/jcb.6.2.147; PMID: 13843146
  • Callan HG, Randall JT, Tomlin SG. An electron microscope study of the nuclear membrane. Nature 1949; 163:280; http://dx.doi.org/10.1038/163280a0; PMID: 18112254
  • Callan HG, Tomlin SG. Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond B Biol Sci 1950; 137:367 - 78; http://dx.doi.org/10.1098/rspb.1950.0047; PMID: 14786306
  • Gall JG. Observations on the nuclear membrane with the electron microscope. Exp Cell Res 1954; 7:197 - 200; http://dx.doi.org/10.1016/0014-4827(54)90054-3; PMID: 13200519
  • Anderson E, Beams HW. Evidence from electron micrographs for the passage of material through pores of the nuclear membrane. J Biophys Biochem Cytol 1956; 2:Suppl 439 - 44; http://dx.doi.org/10.1083/jcb.2.4.439; PMID: 13357583
  • Beams HW, Tahmisian TN, Anderson E, Devine RL. The structure of nuclear membrane in larval gonads of Heliothis obsoleta. Proc Soc Exp Biol Med 1956; 91:473 - 5; PMID: 13322969
  • Aaronson RP, Blobel G. Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci U S A 1975; 72:1007 - 11; http://dx.doi.org/10.1073/pnas.72.3.1007; PMID: 1055359
  • Grünwald D, Singer RH, Rout M. Nuclear export dynamics of RNA-protein complexes. Nature 2011; 475:333 - 41; http://dx.doi.org/10.1038/nature10318; PMID: 21776079
  • Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem 2011; 80:613 - 43; http://dx.doi.org/10.1146/annurev-biochem-060109-151030; PMID: 21495847
  • DuPraw E. Cell and Molecular Biology. New York: Academic Press, 1958:424.
  • Dupraw EJ. Cell and Molecular Biology. NY: Academic Press, 1954.
  • Comings DE, Okada TA. Association of nuclear membrane fragments with metaphase and anaphase chromosomes as observed by whole mount electron microscopy. Exp Cell Res 1970; 63:62 - 8; http://dx.doi.org/10.1016/0014-4827(70)90331-9; PMID: 5531486
  • Kirschner RH, Rusli M, Martin TE. Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy. J Cell Biol 1977; 72:118 - 32; http://dx.doi.org/10.1083/jcb.72.1.118; PMID: 556616
  • Chan JK, Park PC, De Boni U. Association of DNAse sensitive chromatin domains with the nuclear periphery in 3T3 cells in vitro. Biochem Cell Biol 2000; 78:67 - 78; http://dx.doi.org/10.1139/o99-074; PMID: 10874467
  • Hutchison N, Weintraub H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 1985; 43:471 - 82; http://dx.doi.org/10.1016/0092-8674(85)90177-1; PMID: 4075401
  • Markovics J, Glass L, Maul GG. Pore patterns on nuclear membranes. Exp Cell Res 1974; 85:443 - 51; http://dx.doi.org/10.1016/0014-4827(74)90148-7; PMID: 4827878
  • Arlucea J, Andrade R, Alonso R, Aréchaga J. The nuclear basket of the nuclear pore complex is part of a higher-order filamentous network that is related to chromatin. J Struct Biol 1998; 124:51 - 8; http://dx.doi.org/10.1006/jsbi.1998.4054; PMID: 9931273
  • Light WH, Brickner DG, Brand VR, Brickner JH. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol Cell 2010; 40:112 - 25; http://dx.doi.org/10.1016/j.molcel.2010.09.007; PMID: 20932479
  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 2006; 21:379 - 91; http://dx.doi.org/10.1016/j.molcel.2005.12.012; PMID: 16455493
  • Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 2002; 13:1282 - 97; http://dx.doi.org/10.1091/mbc.01-11-0538; PMID: 11950939
  • Griffis ER, Craige B, Dimaano C, Ullman KS, Powers MA. Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol Biol Cell 2004; 15:1991 - 2002; http://dx.doi.org/10.1091/mbc.E03-10-0743; PMID: 14718558
  • Dilworth DJ, Suprapto A, Padovan JC, Chait BT, Wozniak RW, Rout MP, et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J Cell Biol 2001; 153:1465 - 78; http://dx.doi.org/10.1083/jcb.153.7.1465; PMID: 11425876
  • Nakielny S, Shaikh S, Burke B, Dreyfuss G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J 1999; 18:1982 - 95; http://dx.doi.org/10.1093/emboj/18.7.1982; PMID: 10202161
  • Rabut G, Doye V, Ellenberg J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 2004; 6:1114 - 21; http://dx.doi.org/10.1038/ncb1184; PMID: 15502822
  • Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 2006; 103:17801 - 6; http://dx.doi.org/10.1073/pnas.0608484103; PMID: 17098863
  • Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2006; 70:253 - 82; http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006; PMID: 16524925
  • Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 2006; 441:770 - 3; http://dx.doi.org/10.1038/nature04752; PMID: 16760982
  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 2006; 441:774 - 8; http://dx.doi.org/10.1038/nature04845; PMID: 16760983
  • Entian KD. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 1980; 178:633 - 7; http://dx.doi.org/10.1007/BF00337871; PMID: 6993859
  • Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 1984; 108:845 - 58; PMID: 6392017
  • Neigeborn L, Carlson M. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 1987; 115:247 - 53; PMID: 3549450
  • Sarma NJ, Buford TD, Haley T, Barbara-Haley K, Santangelo GM, Willis KA. The nuclear pore complex mediates binding of the Mig1 repressor to target promoters. PLoS One 2011; 6:e27117; http://dx.doi.org/10.1371/journal.pone.0027117; PMID: 22110603
  • Boukaba A, Georgieva EI, Myers FA, Thorne AW, López-Rodas G, Crane-Robinson C, et al. A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene. J Biol Chem 2004; 279:7678 - 84; http://dx.doi.org/10.1074/jbc.M310849200; PMID: 14670975
  • Zawadzki KA, Morozov AV, Broach JR. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:3503 - 13; http://dx.doi.org/10.1091/mbc.E09-02-0111; PMID: 19494041
  • Geng F, Laurent BC. Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene. EMBO J 2004; 23:127 - 37; http://dx.doi.org/10.1038/sj.emboj.7600035; PMID: 14685262
  • Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 2008; 28:2244 - 56; http://dx.doi.org/10.1128/MCB.01653-07; PMID: 18212056
  • Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 2007; 282:3042 - 9; http://dx.doi.org/10.1074/jbc.M608741200; PMID: 17158105
  • Titus LC, Dawson TR, Rexer DJ, Ryan KJ, Wente SR. Members of the RSC chromatin-remodeling complex are required for maintaining proper nuclear envelope structure and pore complex localization. Mol Biol Cell 2010; 21:1072 - 87; http://dx.doi.org/10.1091/mbc.E09-07-0615; PMID: 20110349
  • Ng HH, Robert F, Young RA, Struhl K. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 2002; 16:806 - 19; http://dx.doi.org/10.1101/gad.978902; PMID: 11937489
  • Gould VE, Orucevic A, Zentgraf H, Gattuso P, Martinez N, Alonso A. Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Hum Pathol 2002; 33:536 - 44; http://dx.doi.org/10.1053/hupa.2002.124785; PMID: 12094380
  • Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36:1084 - 9; http://dx.doi.org/10.1038/ng1425; PMID: 15361874
  • Soman NR, Wogan GN, Rhim JS. TPR-MET oncogenic rearrangement: detection by polymerase chain reaction amplification of the transcript and expression in human tumor cell lines. Proc Natl Acad Sci U S A 1990; 87:738 - 42; http://dx.doi.org/10.1073/pnas.87.2.738; PMID: 2300559
  • Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003; 37:98 - 105; http://dx.doi.org/10.1002/gcc.10177; PMID: 12661011
  • Köhler A, Hurt E. Gene regulation by nucleoporins and links to cancer. Mol Cell 2010; 38:6 - 15; http://dx.doi.org/10.1016/j.molcel.2010.01.040; PMID: 20385085
  • Xu S, Powers MA. Nuclear pore proteins and cancer. Semin Cell Dev Biol 2009; 20:620 - 30; http://dx.doi.org/10.1016/j.semcdb.2009.03.003; PMID: 19577736
  • Lam DH, Aplan PD. NUP98 gene fusions in hematologic malignancies. Leukemia 2001; 15:1689 - 95; http://dx.doi.org/10.1038/sj.leu.2402269; PMID: 11681408
  • Gough SM, Slape CI, Aplan PD. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 2011; 118:6247 - 57; http://dx.doi.org/10.1182/blood-2011-07-328880; PMID: 21948299
  • Funasaka T, Nakano H, Wu Y, Hashizume C, Gu L, Nakamura T, et al. RNA export factor RAE1 contributes to NUP98-HOXA9-mediated leukemogenesis. Cell Cycle 2011; 10:1456 - 67; http://dx.doi.org/10.4161/cc.10.9.15494; PMID: 21467841
  • Ren Y, Seo HS, Blobel G, Hoelz A. Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proc Natl Acad Sci U S A 2010; 107:10406 - 11; http://dx.doi.org/10.1073/pnas.1005389107; PMID: 20498086
  • Takeda A, Sarma NJ, Abdul-Nabi AM, Yaseen NR. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. J Biol Chem 2010; 285:16248 - 57; http://dx.doi.org/10.1074/jbc.M109.048785; PMID: 20233715
  • Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12:154 - 8; http://dx.doi.org/10.1038/ng0296-154; PMID: 8563753
  • Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD. NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58:4269 - 73; PMID: 9766650
  • Nakamura T, Yamazaki Y, Hatano Y, Miura I. NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). Blood 1999; 94:741 - 7; PMID: 10397741
  • Panagopoulos I, Isaksson M, Billström R, Strömbeck B, Mitelman F, Johansson B. Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13). Genes Chromosomes Cancer 2003; 36:107 - 12; http://dx.doi.org/10.1002/gcc.10139; PMID: 12461755
  • Jankovic D, Gorello P, Liu T, Ehret S, La Starza R, Desjobert C, et al. Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia. Blood 2008; 111:5672 - 82; http://dx.doi.org/10.1182/blood-2007-09-108175; PMID: 18388181
  • Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR. The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem 2004; 279:866 - 75; http://dx.doi.org/10.1074/jbc.M307280200; PMID: 14561764
  • Yassin ER, Sarma NJ, Abdul-Nabi AM, Dombrowski J, Han Y, Takeda A, et al. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9. PLoS One 2009; 4:e6719; http://dx.doi.org/10.1371/journal.pone.0006719; PMID: 19696924
  • Sarma NJ, Yaseen NR. Amino-terminal enhancer of split (AES) interacts with the oncoprotein NUP98-HOXA9 and enhances its transforming ability. J Biol Chem 2011; 286:38989 - 9001; http://dx.doi.org/10.1074/jbc.M111.297952; PMID: 21937451
  • Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19:764 - 76; PMID: 9858599
  • Menon BB, Sarma NJ, Pasula S, Deminoff SJ, Willis KA, Barbara KE, et al. Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc Natl Acad Sci U S A 2005; 102:5749 - 54; http://dx.doi.org/10.1073/pnas.0501768102; PMID: 15817685
  • Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9:804 - 12; http://dx.doi.org/10.1038/ncb1608; PMID: 17589499
  • Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 2009; 459:847 - 51; http://dx.doi.org/10.1038/nature08036; PMID: 19430464
  • Reader JC, Meekins JS, Gojo I, Ning Y. A novel NUP98-PHF23 fusion resulting from a cryptic translocation t(11;17)(p15;p13) in acute myeloid leukemia. Leukemia 2007; 21:842 - 4; PMID: 17287853
  • Wu SF, Zhang H, Cairns BR. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res 2011; 21:578 - 89; http://dx.doi.org/10.1101/gr.113167.110; PMID: 21383318
  • Bell O, Wirbelauer C, Hild M, Scharf AN, Schwaiger M, MacAlpine DM, et al. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J 2007; 26:4974 - 84; http://dx.doi.org/10.1038/sj.emboj.7601926; PMID: 18007591
  • Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 1994; 14:1979 - 85; PMID: 8114729
  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L. Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 1987; 15:6937 - 56; http://dx.doi.org/10.1093/nar/15.17.6937; PMID: 2821486
  • Wu L, Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:4230 - 4; http://dx.doi.org/10.1093/nar/25.21.4230; PMID: 9336451
  • Gavin IM, Simpson RT. Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure. EMBO J 1997; 16:6263 - 71; http://dx.doi.org/10.1093/emboj/16.20.6263; PMID: 9321405
  • Hirschhorn JN, Bortvin AL, Ricupero-Hovasse SL, Winston F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol 1995; 15:1999 - 2009; PMID: 7891695
  • Hirschhorn JN, Brown SA, Clark CD, Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 1992; 6:12A 2288 - 98; http://dx.doi.org/10.1101/gad.6.12a.2288; PMID: 1459453
  • Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 2007; 27:6987 - 95; http://dx.doi.org/10.1128/MCB.00717-07; PMID: 17709398
  • Dror V, Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:8227 - 35; http://dx.doi.org/10.1128/MCB.24.18.8227-8235.2004; PMID: 15340082
  • Fleming AB, Pennings S. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene. Nucleic Acids Res 2007; 35:5520 - 31; http://dx.doi.org/10.1093/nar/gkm573; PMID: 17704134
  • Pollard KJ, Peterson CL. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 1997; 17:6212 - 22; PMID: 9343382
  • Sudarsanam P, Cao Y, Wu L, Laurent BC, Winston F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J 1999; 18:3101 - 6; http://dx.doi.org/10.1093/emboj/18.11.3101; PMID: 10357821
  • Neigeborn L, Celenza JL, Carlson M. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:672 - 8; PMID: 3547080
  • Adkins MW, Tyler JK. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol Cell 2006; 21:405 - 16; http://dx.doi.org/10.1016/j.molcel.2005.12.010; PMID: 16455495
  • Türkel S, Turgut T, López MC, Uemura H, Baker HV. Mutations in GCR1 affect SUC2 gene expression in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 268:825 - 31; PMID: 12655409
  • Sasaki H, Uemura H. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Yeast 2005; 22:111 - 27; http://dx.doi.org/10.1002/yea.1198; PMID: 15645478
  • Barbara KE, Haley TM, Willis KA, Santangelo GM. The transcription factor Gcr1 stimulates cell growth by participating in nutrient-responsive gene expression on a global level. Mol Genet Genomics 2007; 277:171 - 88; http://dx.doi.org/10.1007/s00438-006-0182-0; PMID: 17124610
  • López MC, Baker HV. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 2000; 182:4970 - 8; http://dx.doi.org/10.1128/JB.182.17.4970-4978.2000; PMID: 10940042