1,242
Views
10
CrossRef citations to date
0
Altmetric
Review

The dynamic pathway of nuclear RNA in eukaryotes

&
Pages 195-205 | Received 20 Feb 2013, Accepted 25 Mar 2013, Published online: 11 Apr 2013

References

  • Politz JC, Taneja KL, Singer RH. Characterization of hybridization between synthetic oligodeoxynucleotides and RNA in living cells. Nucleic Acids Res 1995; 23:4946 - 53; http://dx.doi.org/10.1093/nar/23.24.4946; PMID: 8559650
  • Politz JC, Browne ES, Wolf DE, Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A 1998; 95:6043 - 8; http://dx.doi.org/10.1073/pnas.95.11.6043; PMID: 9600914
  • Calapez A, Pereira HM, Calado A, Braga J, Rino J, Carvalho C, et al. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J Cell Biol 2002; 159:795 - 805; http://dx.doi.org/10.1083/jcb.200203046; PMID: 12473688
  • Molenaar C, Marras SA, Slats JC, Truffert JC, Lemaître M, Raap AK, et al. Linear 2′ O-Methyl RNA probes for the visualization of RNA in living cells. Nucleic Acids Res 2001; 29:E89 - 9; http://dx.doi.org/10.1093/nar/29.17.e89; PMID: 11522845
  • Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. J Cell Biol 2004; 165:191 - 202; http://dx.doi.org/10.1083/jcb.200310139; PMID: 15117966
  • Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, et al. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J 2000; 78:3260 - 74; http://dx.doi.org/10.1016/S0006-3495(00)76862-7; PMID: 10828002
  • Tsuji A, Sato Y, Hirano M, Suga T, Koshimoto H, Taguchi T, et al. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophys J 2001; 81:501 - 15; http://dx.doi.org/10.1016/S0006-3495(01)75717-7; PMID: 11423432
  • Okabe K, Harada Y, Zhang J, Tadakuma H, Tani T, Funatsu T. Real time monitoring of endogenous cytoplasmic mRNA using linear antisense 2′-O-methyl RNA probes in living cells. Nucleic Acids Res 2011; 39:e20; http://dx.doi.org/10.1093/nar/gkq1196; PMID: 21106497
  • Tadakuma H, Ishihama Y, Shibuya T, Tani T, Funatsu T. Imaging of single mRNA molecules moving within a living cell nucleus. Biochem Biophys Res Commun 2006; 344:772 - 9; http://dx.doi.org/10.1016/j.bbrc.2006.03.202; PMID: 16631111
  • Ozawa T, Natori Y, Sato M, Umezawa Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 2007; 4:413 - 9; PMID: 17401370
  • Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science 2011; 333:642 - 6; http://dx.doi.org/10.1126/science.1207339; PMID: 21798953
  • Santangelo PJ, Alonas E, Jung J, Lifland AW, Zurla C. Probes for intracellular RNA imaging in live cells. Methods Enzymol 2012; 505:383 - 99; http://dx.doi.org/10.1016/B978-0-12-388448-0.00028-0; PMID: 22289464
  • Bann DV, Parent LJ. Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking. Viruses 2012; 4:963 - 79; http://dx.doi.org/10.3390/v4060963; PMID: 22816035
  • Armitage BA. Imaging of RNA in live cells. Curr Opin Chem Biol 2011; 15:806 - 12; http://dx.doi.org/10.1016/j.cbpa.2011.10.006; PMID: 22055496
  • Urbinati CR, Long RM. Techniques for following the movement of single RNAs in living cells. Wiley Interdiscip Rev RNA 2011; 2:601 - 9; http://dx.doi.org/10.1002/wrna.83; PMID: 21957047
  • Christensen NM, Oparka KJ, Tilsner J. Advances in imaging RNA in plants. Trends Plant Sci 2010; 15:196 - 203; http://dx.doi.org/10.1016/j.tplants.2010.01.005; PMID: 20153241
  • Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 2009; 6:331 - 8; http://dx.doi.org/10.1038/nmeth.1321; PMID: 19404252
  • Dictenberg J. Genetic encoding of fluorescent RNA ensures a bright future for visualizing nucleic acid dynamics. Trends Biotechnol 2012; 30:621 - 6; http://dx.doi.org/10.1016/j.tibtech.2012.09.004; PMID: 23127753
  • Politz JC, Tuft RA, Pederson T, Singer RH. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr Biol 1999; 9:285 - 91; http://dx.doi.org/10.1016/S0960-9822(99)80136-5; PMID: 10209094
  • Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S. Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A 2003; 100:13308 - 13; http://dx.doi.org/10.1073/pnas.2233244100; PMID: 14583593
  • Kubota T, Ikeda S, Yanagisawa H, Yuki M, Okamoto A. Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living cell. PLoS One 2010; 5:e13003; http://dx.doi.org/10.1371/journal.pone.0013003; PMID: 20885944
  • Santangelo PJ, Lifland AW, Curt P, Sasaki Y, Bassell GJ, Lindquist ME, et al. Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 2009; 6:347 - 9; http://dx.doi.org/10.1038/nmeth.1316; PMID: 19349979
  • Vargas DY, Raj A, Marras SA, Kramer FR, Tyagi S. Mechanism of mRNA transport in the nucleus. Proc Natl Acad Sci U S A 2005; 102:17008 - 13; http://dx.doi.org/10.1073/pnas.0505580102; PMID: 16284251
  • Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, et al. From silencing to gene expression: real-time analysis in single cells. Cell 2004; 116:683 - 98; http://dx.doi.org/10.1016/S0092-8674(04)00171-0; PMID: 15006351
  • Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, et al. In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 2007; 14:796 - 806; http://dx.doi.org/10.1038/nsmb1280; PMID: 17676063
  • Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, et al. The life of an mRNA in space and time. J Cell Sci 2010; 123:1761 - 74; http://dx.doi.org/10.1242/jcs.062638; PMID: 20427315
  • Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein EM, Neugebauer KM, et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 2011; 9:e1000573; http://dx.doi.org/10.1371/journal.pbio.1000573; PMID: 21264352
  • Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, et al. The transcriptional cycle of HIV-1 in real-time and live cells. J Cell Biol 2007; 179:291 - 304; http://dx.doi.org/10.1083/jcb.200706018; PMID: 17954611
  • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010; 141:970 - 81; http://dx.doi.org/10.1016/j.cell.2010.04.038; PMID: 20550933
  • Martins SB, Rino J, Carvalho T, Carvalho C, Yoshida M, Klose JM, et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat Struct Mol Biol 2011; 18:1115 - 23; http://dx.doi.org/10.1038/nsmb.2124; PMID: 21892168
  • de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 2011; 17:2094 - 107; http://dx.doi.org/10.1261/rna.02918111; PMID: 22028363
  • Golding I, Cox EC. RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci U S A 2004; 101:11310 - 5; http://dx.doi.org/10.1073/pnas.0404443101; PMID: 15277674
  • Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria. Cell 2005; 123:1025 - 36; http://dx.doi.org/10.1016/j.cell.2005.09.031; PMID: 16360033
  • Haim-Vilmovsky L, Gadir N, Herbst RH, Gerst JE. A genomic integration method for the simultaneous visualization of endogenous mRNAs and their translation products in living yeast. RNA 2011; 17:2249 - 55; http://dx.doi.org/10.1261/rna.029637.111; PMID: 22025736
  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell 1998; 2:437 - 45; http://dx.doi.org/10.1016/S1097-2765(00)80143-4; PMID: 9809065
  • Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene. Curr Biol 2006; 16:1018 - 25; http://dx.doi.org/10.1016/j.cub.2006.03.092; PMID: 16713960
  • Muramoto T, Cannon D, Gierlinski M, Corrigan A, Barton GJ, Chubb JR. Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 2012; 109:7350 - 5; http://dx.doi.org/10.1073/pnas.1117603109; PMID: 22529358
  • Forrest KM, Gavis ER. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 2003; 13:1159 - 68; http://dx.doi.org/10.1016/S0960-9822(03)00451-2; PMID: 12867026
  • Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 2008; 134:843 - 53; http://dx.doi.org/10.1016/j.cell.2008.06.053; PMID: 18775316
  • Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat Methods 2010; 7:631 - 3; http://dx.doi.org/10.1038/nmeth.1482; PMID: 20639867
  • Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 2011; 8:165 - 70; http://dx.doi.org/10.1038/nmeth.1551; PMID: 21240280
  • Singh OP, Björkroth B, Masich S, Wieslander L, Daneholt B. The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp Cell Res 1999; 251:135 - 46; http://dx.doi.org/10.1006/excr.1999.4490; PMID: 10438579
  • Snaar SP, Verdijk P, Tanke HJ, Dirks RW. Kinetics of HCMV immediate early mRNA expression in stably transfected fibroblasts. J Cell Sci 2002; 115:321 - 8; PMID: 11839784
  • Braga J, McNally JG, Carmo-Fonseca M. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 2007; 92:2694 - 703; http://dx.doi.org/10.1529/biophysj.106.096693; PMID: 17259280
  • Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 2003; 13:161 - 7; http://dx.doi.org/10.1016/S0960-9822(02)01436-7; PMID: 12546792
  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, et al. Dynamics of single mRNPs in nuclei of living cells. Science 2004; 304:1797 - 800; http://dx.doi.org/10.1126/science.1099754; PMID: 15205532
  • Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 1997; 26:373 - 99; http://dx.doi.org/10.1146/annurev.biophys.26.1.373; PMID: 9241424
  • Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 2010; 12:543 - 52; http://dx.doi.org/10.1038/ncb2056; PMID: 20453848
  • Shav-Tal Y, Gruenbaum Y. Single-molecule dynamics of nuclear mRNA. F1000 Biol Rep 2009; 1:29 - 32; PMID: 20948657
  • Siebrasse JP, Veith R, Dobay A, Leonhardt H, Daneholt B, Kubitscheck U. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc Natl Acad Sci U S A 2008; 105:20291 - 6; http://dx.doi.org/10.1073/pnas.0810692105; PMID: 19074261
  • Ishihama Y, Funatsu T. Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus. Biochem Biophys Res Commun 2009; 381:33 - 8; http://dx.doi.org/10.1016/j.bbrc.2009.02.001; PMID: 19351590
  • Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner WE. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc Natl Acad Sci U S A 2010; 107:17864 - 71; http://dx.doi.org/10.1073/pnas.1012868107; PMID: 20921361
  • Grünwald D, Martin RM, Buschmann V, Bazett-Jones DP, Leonhardt H, Kubitscheck U, et al. Probing intranuclear environments at the single-molecule level. Biophys J 2008; 94:2847 - 58; http://dx.doi.org/10.1529/biophysj.107.115014; PMID: 18065482
  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 2009; 28:3785 - 98; http://dx.doi.org/10.1038/emboj.2009.340; PMID: 19927119
  • Matsumoto K, Tanaka KJ, Aoki K, Sameshima M, Tsujimoto M. Visualization of the reconstituted FRGY2-mRNA complexes by electron microscopy. Biochem Biophys Res Commun 2003; 306:53 - 8; http://dx.doi.org/10.1016/S0006-291X(03)00909-4; PMID: 12788065
  • Batisse J, Batisse C, Budd A, Böttcher B, Hurt E. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 2009; 284:34911 - 7; http://dx.doi.org/10.1074/jbc.M109.062034; PMID: 19840948
  • Skabkin MA, Kiselyova OI, Chernov KG, Sorokin AV, Dubrovin EV, Yaminsky IV, et al. Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res 2004; 32:5621 - 35; http://dx.doi.org/10.1093/nar/gkh889; PMID: 15494450
  • Braga J, Rino J, Carmo-Fonseca M. Photobleaching microscopy reveals the dynamics of mRNA-binding proteins inside live cell nuclei. Prog Mol Subcell Biol 2004; 35:119 - 34; http://dx.doi.org/10.1007/978-3-540-74266-1_6; PMID: 15113082
  • Roussel MR, Tang T. Simulation of mRNA diffusion in the nuclear environment. IET Syst Biol 2012; 6:125 - 33; http://dx.doi.org/10.1049/iet-syb.2011.0032; PMID: 23039693
  • Boulon S, Basyuk E, Blanchard JM, Bertrand E, Verheggen C. Intra-nuclear RNA trafficking: insights from live cell imaging. Biochimie 2002; 84:805 - 13; http://dx.doi.org/10.1016/S0300-9084(02)01438-4; PMID: 12457567
  • Kues T, Dickmanns A, Lührmann R, Peters R, Kubitscheck U. High intranuclear mobility and dynamic clustering of the splicing factor U1 snRNP observed by single particle tracking. Proc Natl Acad Sci U S A 2001; 98:12021 - 6; http://dx.doi.org/10.1073/pnas.211250098; PMID: 11593012
  • Grünwald D, Spottke B, Buschmann V, Kubitscheck U. Intranuclear binding kinetics and mobility of single native U1 snRNP particles in living cells. Mol Biol Cell 2006; 17:5017 - 27; http://dx.doi.org/10.1091/mbc.E06-06-0559; PMID: 16987963
  • Handwerger KE, Murphy C, Gall JG. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J Cell Biol 2003; 160:495 - 504; http://dx.doi.org/10.1083/jcb.200212024; PMID: 12591912
  • Ali GS, Prasad KV, Hanumappa M, Reddy AS. Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC. PLoS One 2008; 3:e1953; http://dx.doi.org/10.1371/journal.pone.0001953; PMID: 18414657
  • Rino J, Carvalho T, Braga J, Desterro JM, Lührmann R, Carmo-Fonseca M. A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 2007; 3:2019 - 31; http://dx.doi.org/10.1371/journal.pcbi.0030201; PMID: 17967051
  • Sapra AK, Ankö ML, Grishina I, Lorenz M, Pabis M, Poser I, et al. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 2009; 34:179 - 90; http://dx.doi.org/10.1016/j.molcel.2009.02.031; PMID: 19394295
  • Huranová M, Ivani I, Benda A, Poser I, Brody Y, Hof M, et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 2010; 191:75 - 86; http://dx.doi.org/10.1083/jcb.201004030; PMID: 20921136
  • Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 2005; 19:53 - 63; http://dx.doi.org/10.1016/j.molcel.2005.05.007; PMID: 15989964
  • Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 1988; 2:754 - 65; http://dx.doi.org/10.1101/gad.2.6.754; PMID: 3138163
  • Wetterberg I, Baurén G, Wieslander L. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 1996; 2:641 - 51; PMID: 8756407
  • Audibert A, Weil D, Dautry F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol Cell Biol 2002; 22:6706 - 18; http://dx.doi.org/10.1128/MCB.22.19.6706-6718.2002; PMID: 12215528
  • Singh J, Padgett RA. Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128 - 33; http://dx.doi.org/10.1038/nsmb.1666; PMID: 19820712
  • Clelland AK, Bales AB, Sleeman JE. Changes in intranuclear mobility of mature snRNPs provide a mechanism for splicing defects in spinal muscular atrophy. J Cell Sci 2012; 125:2626 - 37; http://dx.doi.org/10.1242/jcs.096867; PMID: 22393244
  • Gallardo F, Laterreur N, Cusanelli E, Ouenzar F, Querido E, Wellinger RJ, et al. Live cell imaging of telomerase RNA dynamics reveals cell cycle-dependent clustering of telomerase at elongating telomeres. Mol Cell 2011; 44:819 - 27; http://dx.doi.org/10.1016/j.molcel.2011.09.020; PMID: 22152484
  • Holt I, Mittal S, Furling D, Butler-Browne GS, Brook JD, Morris GE. Defective mRNA in myotonic dystrophy accumulates at the periphery of nuclear splicing speckles. Genes Cells 2007; 12:1035 - 48; http://dx.doi.org/10.1111/j.1365-2443.2007.01112.x; PMID: 17825047
  • Smith KP, Byron M, Johnson C, Xing Y, Lawrence JB. Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked at entry into SC-35 domains. J Cell Biol 2007; 178:951 - 64; http://dx.doi.org/10.1083/jcb.200706048; PMID: 17846170
  • Querido E, Gallardo F, Beaudoin M, Ménard C, Chartrand P. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci 2011; 124:1703 - 14; http://dx.doi.org/10.1242/jcs.073270; PMID: 21511730
  • Spann P, Feinerman M, Sperling J, Sperling R. Isolation and visualization of large compact ribonucleoprotein particles of specific nuclear RNAs. Proc Natl Acad Sci U S A 1989; 86:466 - 70; http://dx.doi.org/10.1073/pnas.86.2.466; PMID: 2521390
  • Iborra FJ, Jackson DA, Cook PR. The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins. J Cell Sci 1998; 111:2269 - 82; PMID: 9664048
  • Panté N, Jarmolowski A, Izaurralde E, Sauder U, Baschong W, Mattaj IW. Visualizing nuclear export of different classes of RNA by electron microscopy. RNA 1997; 3:498 - 513; PMID: 9149231
  • Huang S, Deerinck TJ, Ellisman MH, Spector DL. In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J Cell Biol 1994; 126:877 - 99; http://dx.doi.org/10.1083/jcb.126.4.877; PMID: 7519622
  • Dworetzky SI, Feldherr CM. Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J Cell Biol 1988; 106:575 - 84; http://dx.doi.org/10.1083/jcb.106.3.575; PMID: 2450095
  • Iborra FJ, Jackson DA, Cook PR. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 2000; 113:291 - 302; PMID: 10633080
  • Yang W, Gelles J, Musser SM. Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A 2004; 101:12887 - 92; http://dx.doi.org/10.1073/pnas.0403675101; PMID: 15306682
  • Ribbeck K, Görlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20:1320 - 30; http://dx.doi.org/10.1093/emboj/20.6.1320; PMID: 11250898
  • Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 2010; 9:2205 - 24; http://dx.doi.org/10.1074/mcp.M000035-MCP201; PMID: 20368288
  • Mehlin H, Daneholt B, Skoglund U. Structural interaction between the nuclear pore complex and a specific translocating RNP particle. J Cell Biol 1995; 129:1205 - 16; http://dx.doi.org/10.1083/jcb.129.5.1205; PMID: 7775568
  • Kiseleva E, Goldberg MW, Allen TD, Akey CW. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 1998; 111:223 - 36; PMID: 9405308
  • Fiserova J, Richards SA, Wente SR, Goldberg MW. Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. J Cell Sci 2010; 123:2773 - 80; http://dx.doi.org/10.1242/jcs.070730; PMID: 20647373
  • Mor A, Shav-Tal Y. Dynamics and kinetics of nucleo-cytoplasmic mRNA export. Wiley Interdiscip Rev RNA 2010; 1:388 - 401; http://dx.doi.org/10.1002/wrna.41; PMID: 21956938
  • Grünwald D, Singer RH, Rout M. Nuclear export dynamics of RNA-protein complexes. Nature 2011; 475:333 - 41; http://dx.doi.org/10.1038/nature10318; PMID: 21776079
  • Stevens BJ, Swift H. RNA transport from nucleus to cytoplasm in Chironomus salivary glands. J Cell Biol 1966; 31:55 - 77; http://dx.doi.org/10.1083/jcb.31.1.55; PMID: 5971975
  • Mehlin H, Daneholt B, Skoglund U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 1992; 69:605 - 13; http://dx.doi.org/10.1016/0092-8674(92)90224-Z; PMID: 1586943
  • Skoglund U, Andersson K, Björkroth B, Lamb MM, Daneholt B. Visualization of the formation and transport of a specific hnRNP particle. Cell 1983; 34:847 - 55; http://dx.doi.org/10.1016/0092-8674(83)90542-1; PMID: 6556087
  • Kiseleva E, Goldberg MW, Daneholt B, Allen TD. RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol 1996; 260:304 - 11; http://dx.doi.org/10.1006/jmbi.1996.0401; PMID: 8757794
  • Siebrasse JP, Kaminski T, Kubitscheck U. Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc Natl Acad Sci U S A 2012; 109:9426 - 31; http://dx.doi.org/10.1073/pnas.1201781109; PMID: 22615357
  • Noble KN, Tran EJ, Alcázar-Román AR, Hodge CA, Cole CN, Wente SR. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev 2011; 25:1065 - 77; http://dx.doi.org/10.1101/gad.2040611; PMID: 21576266
  • Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R. Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 2003; 4:861 - 6; http://dx.doi.org/10.1038/sj.embor.embor922; PMID: 12947417
  • Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 1997; 138:131 - 42; http://dx.doi.org/10.1083/jcb.138.1.131; PMID: 9214387
  • Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2:292 - 301; http://dx.doi.org/10.1038/35066075; PMID: 11283701
  • Zachar Z, Kramer J, Mims IP, Bingham PM. Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 1993; 121:729 - 42; http://dx.doi.org/10.1083/jcb.121.4.729; PMID: 8491768
  • Fakan S. Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 1994; 4:86 - 90; http://dx.doi.org/10.1016/0962-8924(94)90180-5; PMID: 14731598
  • Spector DL. The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 2003; 72:573 - 608; http://dx.doi.org/10.1146/annurev.biochem.72.121801.161724; PMID: 14527325
  • Niedojadlo J, Perret-Vivancos C, Kalland KH, Cmarko D, Cremer T, van Driel R, et al. Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei. Exp Cell Res 2011; 317:433 - 44; http://dx.doi.org/10.1016/j.yexcr.2010.10.026; PMID: 21056558
  • Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol 2010; 395:1 - 10; http://dx.doi.org/10.1016/j.jmb.2009.10.031; PMID: 19852969
  • Carter KC, Bowman D, Carrington W, Fogarty K, McNeil JA, Fay FS, et al. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 1993; 259:1330 - 5; http://dx.doi.org/10.1126/science.8446902; PMID: 8446902
  • Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, et al. Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 2005; 302:180 - 93; http://dx.doi.org/10.1016/j.yexcr.2004.07.038; PMID: 15561100
  • Reichenzeller M, Burzlaff A, Lichter P, Herrmann H. In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells. J Struct Biol 2000; 129:175 - 85; http://dx.doi.org/10.1006/jsbi.2000.4224; PMID: 10806067
  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P. Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1993; 1:93 - 106; http://dx.doi.org/10.1007/BF00710032; PMID: 8143096
  • Lawrence JB, Singer RH, Marselle LM. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 1989; 57:493 - 502; http://dx.doi.org/10.1016/0092-8674(89)90924-0; PMID: 2541917
  • Xing YG, Lawrence JB. Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation. J Cell Biol 1991; 112:1055 - 63; http://dx.doi.org/10.1083/jcb.112.6.1055; PMID: 1705562
  • Xing Y, Johnson CV, Dobner PR, Lawrence JB. Higher level organization of individual gene transcription and RNA splicing. Science 1993; 259:1326 - 30; http://dx.doi.org/10.1126/science.8446901; PMID: 8446901
  • Dirks RW, Daniël KC, Raap AK. RNAs radiate from gene to cytoplasm as revealed by fluorescence in situ hybridization. J Cell Sci 1995; 108:2565 - 72; PMID: 7593297
  • Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L, Norder H, et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 2010; 29:1659 - 73; http://dx.doi.org/10.1038/emboj.2010.54; PMID: 20407419
  • Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, et al. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006; 14:707 - 33; http://dx.doi.org/10.1007/s10577-006-1086-x; PMID: 17115328
  • Tutucci E, Stutz F. Keeping mRNPs in check during assembly and nuclear export. Nat Rev Mol Cell Biol 2011; 12:377 - 84; http://dx.doi.org/10.1038/nrm3119; PMID: 21602906
  • Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 2000; 407:401 - 5; http://dx.doi.org/10.1038/35030160; PMID: 11014198
  • Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 2002; 417:304 - 8; http://dx.doi.org/10.1038/nature746; PMID: 11979277
  • Stutz F, Bachi A, Doerks T, Braun IC, Séraphin B, Wilm M, et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 2000; 6:638 - 50; http://dx.doi.org/10.1017/S1355838200000078; PMID: 10786854
  • Bachi A, Braun IC, Rodrigues JP, Panté N, Ribbeck K, von Kobbe C, et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 2000; 6:136 - 58; http://dx.doi.org/10.1017/S1355838200991994; PMID: 10668806
  • Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 1999; 18:2593 - 609; http://dx.doi.org/10.1093/emboj/18.9.2593; PMID: 10228171
  • Wickramasinghe VO, McMurtrie PI, Mills AD, Takei Y, Penrhyn-Lowe S, Amagase Y, et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr Biol 2010; 20:25 - 31; http://dx.doi.org/10.1016/j.cub.2009.10.078; PMID: 20005110
  • Le Hir H, Izaurralde E, Maquat LE, Moore MJ. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 2000; 19:6860 - 9; http://dx.doi.org/10.1093/emboj/19.24.6860; PMID: 11118221
  • Le Hir H, Gatfield D, Izaurralde E, Moore MJ. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 2001; 20:4987 - 97; http://dx.doi.org/10.1093/emboj/20.17.4987; PMID: 11532962
  • Björk P, Jin S, Zhao J, Singh OP, Persson JO, Hellman U, et al. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions. J Cell Biol 2009; 184:555 - 68; http://dx.doi.org/10.1083/jcb.200806156; PMID: 19221196
  • Schmidt U, Richter K, Berger AB, Lichter P. In vivo BiFC analysis of Y14 and NXF1 mRNA export complexes: preferential localization within and around SC35 domains. J Cell Biol 2006; 172:373 - 81; http://dx.doi.org/10.1083/jcb.200503061; PMID: 16431928
  • Cullen BR. Nuclear RNA export. J Cell Sci 2003; 116:587 - 97; http://dx.doi.org/10.1242/jcs.00268; PMID: 12538759
  • Lang I, Scholz M, Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol 1986; 102:1183 - 90; http://dx.doi.org/10.1083/jcb.102.4.1183; PMID: 2420804
  • Braga J, Desterro JM, Carmo-Fonseca M. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 2004; 15:4749 - 60; http://dx.doi.org/10.1091/mbc.E04-06-0496; PMID: 15292455
  • English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 2011; 108:E365 - 73; http://dx.doi.org/10.1073/pnas.1102255108; PMID: 21730169
  • Golding I, Cox EC. Physical nature of bacterial cytoplasm. Phys Rev Lett 2006; 96:098102; http://dx.doi.org/10.1103/PhysRevLett.96.098102; PMID: 16606319
  • Schnell S, Hancock R. The intranuclear environment. Methods Mol Biol 2008; 463:3 - 19; http://dx.doi.org/10.1007/978-1-59745-406-3_1; PMID: 18951157
  • Richter K, Nessling M, Lichter P. Experimental evidence for the influence of molecular crowding on nuclear architecture. J Cell Sci 2007; 120:1673 - 80; http://dx.doi.org/10.1242/jcs.03440; PMID: 17430977
  • Hameed FM, Rao M, Shivashankar GV. Dynamics of passive and active particles in the cell nucleus. PLoS One 2012; 7:e45843; http://dx.doi.org/10.1371/journal.pone.0045843; PMID: 23077497
  • Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J. Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 2009; 4:e5041; http://dx.doi.org/10.1371/journal.pone.0005041; PMID: 19347038
  • Hinde E, Cardarelli F, Digman MA, Gratton E. In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc Natl Acad Sci U S A 2010; 107:16560 - 5; http://dx.doi.org/10.1073/pnas.1006731107; PMID: 20823232
  • Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 2012; 149:832 - 46; http://dx.doi.org/10.1016/j.cell.2012.03.032; PMID: 22579286
  • Montpetit B, Weis K. Cell biology. An alternative route for nuclear mRNP export by membrane budding. Science 2012; 336:809 - 10; http://dx.doi.org/10.1126/science.1222243; PMID: 22605737
  • Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 2002; 297:854 - 7; http://dx.doi.org/10.1126/science.1071506; PMID: 12161659
  • Stewart M. Ratcheting mRNA out of the nucleus. Mol Cell 2007; 25:327 - 30; http://dx.doi.org/10.1016/j.molcel.2007.01.016; PMID: 17289581
  • Nachury MV, Weis K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622 - 7; http://dx.doi.org/10.1073/pnas.96.17.9622; PMID: 10449743
  • Kopito RB, Elbaum M. Reversibility in nucleocytoplasmic transport. Proc Natl Acad Sci U S A 2007; 104:12743 - 8; http://dx.doi.org/10.1073/pnas.0702690104; PMID: 17646647
  • Booth-Gauthier EA, Alcoser TA, Yang G, Dahl KN. Force-induced changes in subnuclear movement and rheology. Biophys J 2012; 103:2423 - 31; http://dx.doi.org/10.1016/j.bpj.2012.10.039; PMID: 23260044
  • Dahl KN, Kalinowski A. Nucleoskeleton mechanics at a glance. J Cell Sci 2011; 124:675 - 8; http://dx.doi.org/10.1242/jcs.069096; PMID: 21321324
  • Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 2001; 7:55 - 63; http://dx.doi.org/10.1006/geno.2001.6511; PMID: 11595792
  • Poh YC, Shevtsov SP, Chowdhury F, Wu DC, Na S, Dundr M, et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 2012; 3:866; http://dx.doi.org/10.1038/ncomms1873; PMID: 22643893
  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39:925 - 38; http://dx.doi.org/10.1016/j.molcel.2010.08.011; PMID: 20797886
  • Wilusz JE, Freier SM, Spector DL. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008; 135:919 - 32; http://dx.doi.org/10.1016/j.cell.2008.10.012; PMID: 19041754
  • Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 2012; 45:147 - 57; http://dx.doi.org/10.1016/j.molcel.2011.12.012; PMID: 22284675
  • Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog 2011; 7:e1002300; http://dx.doi.org/10.1371/journal.ppat.1002300; PMID: 22022268
  • Borah S, Nichols LA, Hassman LM, Kedes DH, Steitz JA. Tracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry. RNA 2012; 18:1573 - 9; http://dx.doi.org/10.1261/rna.033126.112; PMID: 22745225
  • Lim F, Downey TP, Peabody DS. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J Biol Chem 2001; 276:22507 - 13; http://dx.doi.org/10.1074/jbc.M102411200; PMID: 11306589
  • Schönberger J, Hammes UZ, Dresselhaus T. In vivo visualization of RNA in plants cells using the λN₂₂ system and a GATEWAY-compatible vector series for candidate RNAs. Plant J 2012; 71:173 - 81; http://dx.doi.org/10.1111/j.1365-313X.2012.04923.x; PMID: 22268772
  • Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 2013; 10:119 - 21; http://dx.doi.org/10.1038/nmeth.2305; PMID: 23263691
  • Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 2011; 332:475 - 8; http://dx.doi.org/10.1126/science.1202142; PMID: 21512033
  • Lange S, Katayama Y, Schmid M, Burkacky O, Bräuchle C, Lamb DC, et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 2008; 9:1256 - 67; http://dx.doi.org/10.1111/j.1600-0854.2008.00763.x; PMID: 18485054
  • Daigle N, Ellenberg J. LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods 2007; 4:633 - 6; http://dx.doi.org/10.1038/nmeth1065; PMID: 17603490
  • Wu B, Chao JA, Singer RH. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 2012; 102:2936 - 44; http://dx.doi.org/10.1016/j.bpj.2012.05.017; PMID: 22735544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.