2,103
Views
23
CrossRef citations to date
0
Altmetric
Review

The fine line between lifespan extension and shortening in response to caloric restriction

&
Pages 56-65 | Received 10 Dec 2013, Accepted 21 Jan 2014, Published online: 27 Jan 2014

References

  • Partridge L, Piper MD, Mair W. Dietary restriction in Drosophila. Mech Ageing Dev 2005; 126:938 - 50; http://dx.doi.org/10.1016/j.mad.2005.03.023; PMID: 15935441
  • Maklakov AA. Aging: why do organisms live too long?. Curr Biol 2013; 23:R1003 - 5; http://dx.doi.org/10.1016/j.cub.2013.10.002; PMID: 24262824
  • Kimber CM, Chippindale AK. Mutation, condition, and the maintenance of extended lifespan in Drosophila. Curr Biol 2013; 23:2283 - 7; http://dx.doi.org/10.1016/j.cub.2013.09.049; PMID: 24210612
  • McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 1935; 10:63 - 79
  • Kaeberlein M. Lessons on longevity from budding yeast. Nature 2010; 464:513 - 9; http://dx.doi.org/10.1038/nature08981; PMID: 20336133
  • Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, Ill., U.S.A.: C.C. Thomas, 1988.
  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489:318 - 21; http://dx.doi.org/10.1038/nature11432; PMID: 22932268
  • Harper JM. Wild-derived mouse stocks: an underappreciated tool for aging research. Age (Dordr) 2008; 30:135 - 45; http://dx.doi.org/10.1007/s11357-008-9057-0; PMID: 19424863
  • Carey JR, Liedo P, Harshman L, Zhang Y, Müller HG, Partridge L, Wang JL. Life history response of Mediterranean fruit flies to dietary restriction. Aging Cell 2002; 1:140 - 8; http://dx.doi.org/10.1046/j.1474-9728.2002.00019.x; PMID: 12882344
  • Sutphin GL, Kaeberlein M. Dietary restriction by bacterial deprivation increases life span in wild-derived nematodes. Exp Gerontol 2008; 43:130 - 5; http://dx.doi.org/10.1016/j.exger.2007.10.019; PMID: 18083317
  • Kasumovic MM, Brooks RC, Andrade MC. Body condition but not dietary restriction prolongs lifespan in a semelparous capital breeder. Biol Lett 2009; 5:636 - 8; http://dx.doi.org/10.1098/rsbl.2009.0335; PMID: 19515652
  • Kaeberlein M, Steffen KK, Hu D, Dang N, Kerr EO, Tsuchiya M, Fields S, Kennedy BK. Comment on “HST2 mediates SIR2-independent life-span extension by calorie restriction”. [author reply] Science 2006; 312:1312 - , author reply 1312; http://dx.doi.org/10.1126/science.1124608; PMID: 16741098
  • Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N, Castanza A, Hsieh EJ, Moller RM, Wasko BM, Delaney JR, et al. Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 2013; 12:1050 - 61; http://dx.doi.org/10.1111/acel.12130; PMID: 23837470
  • Cooper TM, Mockett RJ, Sohal BH, Sohal RS, Orr WC. Effect of caloric restriction on life span of the housefly, Musca domestica. FASEB J 2004; 18:1591 - 3; PMID: 15319362
  • Molleman F, Ding J, Boggs CL, Carey JR, Arlet ME. Does dietary restriction reduce life span in male fruit-feeding butterflies?. Exp Gerontol 2009; 44:601 - 6; http://dx.doi.org/10.1016/j.exger.2009.06.008; PMID: 19580860
  • Weithoff G. Dietary restriction in two rotifer species: the effect of the length of food deprivation on life span and reproduction. Oecologia 2007; 153:303 - 8; http://dx.doi.org/10.1007/s00442-007-0739-6; PMID: 17453249
  • Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 2010; 9:92 - 5; http://dx.doi.org/10.1111/j.1474-9726.2009.00533.x; PMID: 19878144
  • Rikke BA, Liao CY, McQueen MB, Nelson JF, Johnson TE. Genetic dissection of dietary restriction in mice supports the metabolic efficiency model of life extension. Exp Gerontol 2010; 45:691 - 701; http://dx.doi.org/10.1016/j.exger.2010.04.008; PMID: 20452416
  • Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev 2012; 11:254 - 70; http://dx.doi.org/10.1016/j.arr.2011.12.006; PMID: 22210149
  • Mostoslavsky R, Esteller M, Vaquero A. At the crossroad of lifespan, calorie restriction, chromatin and disease: meeting on sirtuins. Cell Cycle 2010; 9:1907 - 12; http://dx.doi.org/10.4161/cc.9.10.11481; PMID: 20458180
  • van Diepeningen AD, Maas MF, Huberts DH, Goedbloed DJ, Engelmoer DJ, Slakhorst SM, Koopmanschap AB, Krause F, Dencher NA, Sellem CH, et al. Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina. Mech Ageing Dev 2010; 131:60 - 8; http://dx.doi.org/10.1016/j.mad.2009.12.002; PMID: 20026344
  • Fusco S, Maulucci G, Pani G. Sirt1: def-eating senescence?. Cell Cycle 2012; 11:4135 - 46; http://dx.doi.org/10.4161/cc.22074; PMID: 22983125
  • Guarente L. Mitochondria--a nexus for aging, calorie restriction, and sirtuins?. Cell 2008; 132:171 - 6; http://dx.doi.org/10.1016/j.cell.2008.01.007; PMID: 18243090
  • Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23:53 - 62; http://dx.doi.org/10.1016/j.gde.2012.12.005; PMID: 23317514
  • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368:1845 - 6; http://dx.doi.org/10.1056/NEJMra1205406; PMID: 23656658
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153:1194 - 217; http://dx.doi.org/10.1016/j.cell.2013.05.039; PMID: 23746838
  • Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell 2013; 152:1365 - 75; http://dx.doi.org/10.1016/j.cell.2013.02.015; PMID: 23498943
  • Liu J, Kim J, Oberdoerffer P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 2013; 4:182; http://dx.doi.org/10.3389/fgene.2013.00182; PMID: 24065984
  • Després JP. Health consequences of visceral obesity. Ann Med 2001; 33:534 - 41; http://dx.doi.org/10.3109/07853890108995963; PMID: 11730160
  • Reilly JJ, Methven E, McDowell ZC, Hacking B, Alexander D, Stewart L, Kelnar CJ. Health consequences of obesity. Arch Dis Child 2003; 88:748 - 52; http://dx.doi.org/10.1136/adc.88.9.748; PMID: 12937090
  • Kitada M, Kume S, Takeda-Watanabe A, Tsuda S, Kanasaki K, Koya D. Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation. Biochim Biophys Acta 2013; 1830:4820 - 7; http://dx.doi.org/10.1016/j.bbagen.2013.06.014; PMID: 23800577
  • Flachs P, Rühl R, Hensler M, Janovska P, Zouhar P, Kus V, Macek Jilkova Z, Papp E, Kuda O, Svobodova M, et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia 2011; 54:2626 - 38; http://dx.doi.org/10.1007/s00125-011-2233-2; PMID: 21779874
  • Liao CY, Rikke BA, Johnson TE, Gelfond JA, Diaz V, Nelson JF. Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell 2011; 10:629 - 39; http://dx.doi.org/10.1111/j.1474-9726.2011.00702.x; PMID: 21388497
  • Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004; 101:6659 - 63; http://dx.doi.org/10.1073/pnas.0308291101; PMID: 15096581
  • Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R, Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373:1083 - 96; http://dx.doi.org/10.1016/S0140-6736(09)60318-4; PMID: 19299006
  • Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol 2007; 42:709 - 12; http://dx.doi.org/10.1016/j.exger.2007.03.009; PMID: 17482403
  • Wisløff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, Fernström M, Rezaei K, Lee SJ, Koch LG, et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 2005; 307:418 - 20; http://dx.doi.org/10.1126/science.1108177; PMID: 15662013
  • Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R, Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373:1083 - 96; http://dx.doi.org/10.1016/S0140-6736(09)60318-4; PMID: 19299006
  • Mair W, Piper MD, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 2005; 3:e223; http://dx.doi.org/10.1371/journal.pbio.0030223; PMID: 16000018
  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 2005; 4:119 - 25; http://dx.doi.org/10.1111/j.1474-9726.2005.00152.x; PMID: 15924568
  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N. Nutritional control of aging. Exp Gerontol 2003; 38:47 - 52; http://dx.doi.org/10.1016/S0531-5565(02)00149-3; PMID: 12543260
  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325:201 - 4; http://dx.doi.org/10.1126/science.1173635; PMID: 19590001
  • Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res 2007; 35:7485 - 96; http://dx.doi.org/10.1093/nar/gkm860; PMID: 17942423
  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005; 120:497 - 512; http://dx.doi.org/10.1016/j.cell.2005.01.028; PMID: 15734682
  • Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 2007; 8:692 - 702; http://dx.doi.org/10.1038/nrm2238; PMID: 17700626
  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009; 30:2 - 10; http://dx.doi.org/10.1093/carcin/bgn250; PMID: 18978338
  • Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair (Amst) 2003; 2:295 - 307; http://dx.doi.org/10.1016/S1568-7864(02)00219-7; PMID: 12547392
  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 2004; 18:595 - 7; PMID: 14734635
  • Kisby GE, Kohama SG, Olivas A, Churchwell M, Doerge D, Spangler E, de Cabo R, Ingram DK, Imhof B, Bao G, et al. Effect of caloric restriction on base-excision repair (BER) in the aging rat brain. Exp Gerontol 2010; 45:208 - 16; http://dx.doi.org/10.1016/j.exger.2009.12.003; PMID: 20005284
  • Guo Z, Heydari A, Richardson A. Nucleotide excision repair of actively transcribed versus nontranscribed DNA in rat hepatocytes: effect of age and dietary restriction. Exp Cell Res 1998; 245:228 - 38; http://dx.doi.org/10.1006/excr.1998.4269; PMID: 9828120
  • Lehmann AR, McGibbon D, Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis 2011; 6:70; http://dx.doi.org/10.1186/1750-1172-6-70; PMID: 22044607
  • Jeggo PA. DNA-PK: at the cross-roads of biochemistry and genetics. Mutat Res 1997; 384:1 - 14; http://dx.doi.org/10.1016/S0921-8777(97)00009-8; PMID: 9201268
  • Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, Chung BS, Kang CD, Kim SH. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mech Ageing Dev 2003; 124:967 - 75; http://dx.doi.org/10.1016/S0047-6374(03)00169-6; PMID: 14499502
  • Steffen KK, Kennedy BK, Kaeberlein M. Measuring replicative life span in the budding yeast. J Vis Exp 2009; http://dx.doi.org/10.3791/1209; PMID: 19556967
  • Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989; 56:771 - 6; http://dx.doi.org/10.1016/0092-8674(89)90681-8; PMID: 2647300
  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425:191 - 6; http://dx.doi.org/10.1038/nature01960; PMID: 12939617
  • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13:2570 - 80; http://dx.doi.org/10.1101/gad.13.19.2570; PMID: 10521401
  • Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998; 12:3821 - 30; http://dx.doi.org/10.1101/gad.12.24.3821; PMID: 9869636
  • Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010; 328:321 - 6; http://dx.doi.org/10.1126/science.1172539; PMID: 20395504
  • Chan JN, Poon BP, Salvi J, Olsen JB, Emili A, Mekhail K. Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains. Dev Cell 2011; 20:867 - 79; http://dx.doi.org/10.1016/j.devcel.2011.05.014; PMID: 21664583
  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009; 459:802 - 7; http://dx.doi.org/10.1038/nature08085; PMID: 19516333
  • Salvi JS, Chan JN, Pettigrew C, Liu TT, Wu JD, Mekhail K. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1. Aging Cell 2013; 12:67 - 75; http://dx.doi.org/10.1111/acel.12020; PMID: 23082874
  • Takeuchi Y, Horiuchi T, Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 2003; 17:1497 - 506; http://dx.doi.org/10.1101/gad.1085403; PMID: 12783853
  • Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 2010; 11:317 - 28; http://dx.doi.org/10.1038/nrm2894; PMID: 20414256
  • Riesen M, Morgan A. Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 2009; 8:624 - 32; http://dx.doi.org/10.1111/j.1474-9726.2009.00514.x; PMID: 19732046
  • Smith DL Jr., Li C, Matecic M, Maqani N, Bryk M, Smith JS. Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell 2009; 8:633 - 42; http://dx.doi.org/10.1111/j.1474-9726.2009.00516.x; PMID: 19732044
  • Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 1997; 11:241 - 54; http://dx.doi.org/10.1101/gad.11.2.241; PMID: 9009206
  • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289:2126 - 8; http://dx.doi.org/10.1126/science.289.5487.2126; PMID: 11000115
  • Smith DL Jr., McClure JM, Matecic M, Smith JS. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 2007; 6:649 - 62; http://dx.doi.org/10.1111/j.1474-9726.2007.00326.x; PMID: 17711561
  • Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A. A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 2013; 9:e1003329; http://dx.doi.org/10.1371/journal.pgen.1003329; PMID: 23505383
  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008; 133:627 - 39; http://dx.doi.org/10.1016/j.cell.2008.03.030; PMID: 18485871
  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305:390 - 2; http://dx.doi.org/10.1126/science.1099196; PMID: 15205477
  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 1992; 89:10114 - 8; http://dx.doi.org/10.1073/pnas.89.21.10114; PMID: 1438199
  • Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978; 120:33 - 53; http://dx.doi.org/10.1016/0022-2836(78)90294-2; PMID: 642006
  • Chan SW, Blackburn EH. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21:553 - 63; http://dx.doi.org/10.1038/sj.onc.1205082; PMID: 11850780
  • Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130:223 - 33; http://dx.doi.org/10.1016/j.cell.2007.07.003; PMID: 17662938
  • Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 2002; 22:4167 - 80; http://dx.doi.org/10.1128/MCB.22.12.4167-4180.2002; PMID: 12024030
  • Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 2012; 191:1073 - 105; http://dx.doi.org/10.1534/genetics.111.137851; PMID: 22879408
  • Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A 2012; 109:1743 - 8; http://dx.doi.org/10.1073/pnas.1113306109; PMID: 22232671
  • Tennen RI, Bua DJ, Wright WE, Chua KF. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2011; 2:433; http://dx.doi.org/10.1038/ncomms1443; PMID: 21847107
  • Kanfi Y, Shalman R, Peshti V, Pilosof SN, Gozlan YM, Pearson KJ, Lerrer B, Moazed D, Marine JC, de Cabo R, et al. Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 2008; 582:543 - 8; http://dx.doi.org/10.1016/j.febslet.2008.01.019; PMID: 18242175
  • Pendergrass WR, Penn PE, Li J, Wolf NS. Age-related telomere shortening occurs in lens epithelium from old rats and is slowed by caloric restriction. Exp Eye Res 2001; 73:221 - 8; http://dx.doi.org/10.1006/exer.2001.1033; PMID: 11446772
  • Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA. Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One 2013; 8:e53760; http://dx.doi.org/10.1371/journal.pone.0053760; PMID: 23349740
  • Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poon LW, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 2012; 13:119 - 31; http://dx.doi.org/10.1007/s10522-011-9360-5; PMID: 21972126
  • Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol 2010; 191:1299 - 313; http://dx.doi.org/10.1083/jcb.201005160; PMID: 21187328
  • Kwan EX, Foss E, Kruglyak L, Bedalov A. Natural polymorphism in BUL2 links cellular amino acid availability with chronological aging and telomere maintenance in yeast. PLoS Genet 2011; 7:e1002250; http://dx.doi.org/10.1371/journal.pgen.1002250; PMID: 21901113
  • Ungar L, Harari Y, Toren A, Kupiec M. Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 2011; 21:2115 - 20; http://dx.doi.org/10.1016/j.cub.2011.11.024; PMID: 22169538
  • Wood JG, Helfand SL. Chromatin structure and transposable elements in organismal aging. Front Genet 2013; 4:274; http://dx.doi.org/10.3389/fgene.2013.00274; PMID: 24363663
  • Banito A, Lowe SW. A new development in senescence. Cell 2013; 155:977 - 8; http://dx.doi.org/10.1016/j.cell.2013.10.050; PMID: 24267881
  • Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, et al. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155:1104 - 18; http://dx.doi.org/10.1016/j.cell.2013.10.019; PMID: 24238962
  • Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155:1119 - 30; http://dx.doi.org/10.1016/j.cell.2013.10.041; PMID: 24238961
  • Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL, Ozanne SE. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J 2008; 22:2037 - 44; http://dx.doi.org/10.1096/fj.07-099523; PMID: 18230683
  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009; 11:1305 - 14; http://dx.doi.org/10.1038/ncb1975; PMID: 19801973
  • Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010; 1:e10; http://dx.doi.org/10.1038/cddis.2009.8; PMID: 21364612
  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24; http://dx.doi.org/10.1371/journal.pgen.0040024; PMID: 18282106
  • Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 2007; 3:597 - 9; PMID: 17912023
  • Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E, Weih M, Bozhkov PV. Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis. Aging Cell 2013; 12:327 - 9; http://dx.doi.org/10.1111/acel.12048; PMID: 23331488
  • Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008; 4:851 - 65; PMID: 18670193
  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477:482 - 5; http://dx.doi.org/10.1038/nature10296; PMID: 21938067
  • Viswanathan M, Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011; 477:E1 - 2; http://dx.doi.org/10.1038/nature10440; PMID: 21938026
  • Kaeberlein M, Kapahi P. Cell signaling. Aging is RSKy business. Science 2009; 326:55 - 6; http://dx.doi.org/10.1126/science.1181034; PMID: 19797648
  • Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11:230 - 41; http://dx.doi.org/10.1016/j.arr.2011.12.005; PMID: 22186033
  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009; 326:140 - 4; http://dx.doi.org/10.1126/science.1177221; PMID: 19797661
  • Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 2013; 494:323 - 7; http://dx.doi.org/10.1038/nature11895; PMID: 23389440
  • Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406:906 - 10; http://dx.doi.org/10.1038/35022604; PMID: 10972294
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120:483 - 95; http://dx.doi.org/10.1016/j.cell.2005.02.001; PMID: 15734681
  • Du C, Anderson A, Lortie M, Parsons R, Bodnar A. Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 2013; 63:254 - 63; http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.023; PMID: 23707327
  • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12:662 - 7; http://dx.doi.org/10.1016/j.cmet.2010.11.015; PMID: 21109198
  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143:802 - 12; http://dx.doi.org/10.1016/j.cell.2010.10.002; PMID: 21094524
  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 1998; 19:171 - 4; http://dx.doi.org/10.1038/534; PMID: 9620775
  • Martin I, Jones MA, Grotewiel M. Manipulation of Sod1 expression ubiquitously, but not in the nervous system or muscle, impacts age-related parameters in Drosophila. FEBS Lett 2009; 583:2308 - 14; http://dx.doi.org/10.1016/j.febslet.2009.06.023; PMID: 19540235
  • Li J, Li T, Zhang X, Tang Y, Yang J, Le W. Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiol Aging 2014; 35:837 - 46; http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.003; PMID: 24126158
  • Merry BJ. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol 2002; 34:1340 - 54; http://dx.doi.org/10.1016/S1357-2725(02)00038-9; PMID: 12200030
  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310:314 - 7; http://dx.doi.org/10.1126/science.1117728; PMID: 16224023
  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, CALERIE Pennington Team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007; 4:e76; http://dx.doi.org/10.1371/journal.pmed.0040076; PMID: 17341128
  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 2004; 279:49883 - 8; http://dx.doi.org/10.1074/jbc.M408918200; PMID: 15383542
  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418:344 - 8; http://dx.doi.org/10.1038/nature00829; PMID: 12124627
  • Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 2005; 37:83 - 90; http://dx.doi.org/10.1007/s10863-005-4131-0; PMID: 15906153
  • Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416:15 - 8; http://dx.doi.org/10.1016/S0014-5793(97)01159-9; PMID: 9369223
  • López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 2006; 103:1768 - 73; http://dx.doi.org/10.1073/pnas.0510452103; PMID: 16446459
  • Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 2012; 492:261 - 5; http://dx.doi.org/10.1038/nature11654; PMID: 23172144
  • Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CM, Palmieri L, Scarcia P, et al. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 2006; 1757:1249 - 62; http://dx.doi.org/10.1016/j.bbabio.2006.05.023; PMID: 16844075
  • Patel BP, Safdar A, Raha S, Tarnopolsky MA, Hamadeh MJ. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One 2010; 5:e9386; http://dx.doi.org/10.1371/journal.pone.0009386; PMID: 20195368
  • Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, Uhde L, Hui J, Wall VZ, Gagnidze A, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 2013; 342:1524 - 8; http://dx.doi.org/10.1126/science.1244360; PMID: 24231806
  • Austad SN. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 1989; 24:83 - 92; http://dx.doi.org/10.1016/0531-5565(89)90037-5; PMID: 2707314
  • Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002; 220:1315 - 20; http://dx.doi.org/10.2460/javma.2002.220.1315; PMID: 11991408