2,362
Views
31
CrossRef citations to date
0
Altmetric
Research Paper

Single cell correlation fractal dimension of chromatin

A framework to interpret 3D single molecule super-resolution

, , , , &
Pages 75-84 | Received 29 Oct 2013, Accepted 14 Feb 2014, Published online: 19 Feb 2014

References

  • Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature 2007; 447:413 - 7; http://dx.doi.org/10.1038/nature05916; PMID: 17522674
  • Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 2010; 75:475 - 92; http://dx.doi.org/10.1101/sqb.2010.75.042; PMID: 21467142
  • Grosberg A, Rabin Y, Havlin S, Neer A. Crumpled Globule Model of the Three-Dimensional Structure of DNA. [EPL] Europhys Lett 1993; 23:373 - 8; http://dx.doi.org/10.1209/0295-5075/23/5/012
  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326:289 - 93; http://dx.doi.org/10.1126/science.1181369; PMID: 19815776
  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE. A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A 1995; 92:2710 - 4; http://dx.doi.org/10.1073/pnas.92.7.2710; PMID: 7708711
  • Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol 2008; 4:e1000153; http://dx.doi.org/10.1371/journal.pcbi.1000153; PMID: 18725929
  • Mirny LA. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 2011; 19:37 - 51; http://dx.doi.org/10.1007/s10577-010-9177-0; PMID: 21274616
  • Bancaud A, Lavelle C, Huet S, Ellenberg J. A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 2012; 40:8783 - 92; http://dx.doi.org/10.1093/nar/gks586; PMID: 22790985
  • Metze K. Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 2013; 13:719 - 35; http://dx.doi.org/10.1586/14737159.2013.828889; PMID: 24063399
  • Lebedev DV, Filatov MV, Kuklin AI, Islamov AKh, Kentzinger E, Pantina R, Toperverg BP, Isaev-Ivanov VV. Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties. FEBS Lett 2005; 579:1465 - 8; http://dx.doi.org/10.1016/j.febslet.2005.01.052; PMID: 15733858
  • Adam RL, Silva RC, Pereira FG, Leite NJ, Lorand-Metze I, Metze K. The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia. Cell Oncol 2006; 28:55 - 9; PMID: 16675881
  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 2009; 28:3785 - 98; http://dx.doi.org/10.1038/emboj.2009.340; PMID: 19927119
  • Falconer K. Fractal Geometry: Mathematical Foundations and Applications. 2nd ed. Wiley; 2003.
  • Lee C, Kramer TA. Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Adv Colloid Interface Sci 2004; 112:49 - 57; http://dx.doi.org/10.1016/j.cis.2004.07.001; PMID: 15581554
  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313:1642 - 5; http://dx.doi.org/10.1126/science.1127344; PMID: 16902090
  • Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008; 319:810 - 3; http://dx.doi.org/10.1126/science.1153529; PMID: 18174397
  • Diggle PJ. Statistical Analysis of Spatial Point Patterns. 2nd ed. Hodder Education Publishers; 2003.
  • Ripley BD. Spatial Statistics. Wiley-Interscience; 2004.
  • Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 2010; 3:446 - 54; http://dx.doi.org/10.1002/jbio.200900089; PMID: 20148419
  • Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 2011; 12:655 - 62; http://dx.doi.org/10.1038/ni.2049; PMID: 21642986
  • Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann DW, et al. Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 2010; 99:1358 - 67; http://dx.doi.org/10.1016/j.bpj.2010.05.043; PMID: 20816047
  • Izeddin I, El Beheiry M, Andilla J, Ciepielewski D, Darzacq X, Dahan M. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Express 2012; 20:4957 - 67; http://dx.doi.org/10.1364/OE.20.004957; PMID: 22418300
  • Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, Agard D, Sedat JW. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones. PLoS One 2010; 5:e12768; http://dx.doi.org/10.1371/journal.pone.0012768; PMID: 20856676
  • Shav-Tal Y, Singer RH, Darzacq X. Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 2004; 5:855 - 61; http://dx.doi.org/10.1038/nrm1494; PMID: 15459666
  • Strickfaden H, Zunhammer A, van Koningsbruggen S, Köhler D, Cremer T. 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 2010; 1:284 - 97; http://dx.doi.org/10.4161/nucl.1.3.11969; PMID: 21327076
  • Cheng Q, Agterberg FP. Multifractal modeling and spatial point processes. Math Geol 1995; 27:831 - 45; http://dx.doi.org/10.1007/BF02087098
  • Baker SM, Buckheit RW 3rd, Falk MM. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 2010; 11:15; http://dx.doi.org/10.1186/1471-2121-11-15; PMID: 20175925
  • Weil W. Spatial Point Processes and their Applications. Berlin: Springer Berlin Heidelberg; 2007.
  • Weston DJ, Adams NM, Russell RA, Stephens DA, Freemont PS. Analysis of spatial point patterns in nuclear biology. PLoS One 2012; 7:e36841; http://dx.doi.org/10.1371/journal.pone.0036841; PMID: 22615822
  • Owen DM, Sauer M, Gaus K. Fluorescence localization microscopy: The transition from concept to biological research tool. Commun Integr Biol 2012; 5:345 - 9; http://dx.doi.org/10.4161/cib.20348; PMID: 23060958
  • Sengupta P, Lippincott-Schwartz J. Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. Bioessays 2012; 34:396 - 405; http://dx.doi.org/10.1002/bies.201200022; PMID: 22447653
  • Hsu C-J, Baumgart T. Spatial association of signaling proteins and F-actin effects on cluster assembly analyzed via photoactivation localization microscopy in T cells. PLoS One 2011; 6:e23586; http://dx.doi.org/10.1371/journal.pone.0023586; PMID: 21887278
  • Prior IA, Muncke C, Parton RG, Hancock JF. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 2003; 160:165 - 70; http://dx.doi.org/10.1083/jcb.200209091; PMID: 12527752
  • Mandelbrot BB. Les objets fractals: forme, hasard et dimension. Flammarion; 1975.
  • Ogata Y, Katsura K. Maximum Likelihood Estimates of the Fractal Dimension for Random Spatial Patterns. Biometrika 1991; 78:463 - 74; http://dx.doi.org/10.1093/biomet/78.3.463
  • Nozaki T, Kaizu K, Pack C-G, Tamura S, Tani T, Hihara S, Nagai T, Takahashi K, Maeshima K. Flexible and dynamic nucleosome fiber in living mammalian cells. Nucleus 2013; 4:349 - 56; http://dx.doi.org/10.4161/nucl.26053; PMID: 23945462
  • Barbieri M, Chotalia M, Fraser J, Lavitas L-M, Dostie J, Pombo A, Nicodemi M. Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 2012; 109:16173 - 8; http://dx.doi.org/10.1073/pnas.1204799109; PMID: 22988072
  • Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773 - 82; http://dx.doi.org/10.1016/j.molcel.2013.02.011; PMID: 23473598
  • Sergé A, Bertaux N, Rigneault H, Marguet D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 2008; 5:687 - 94; http://dx.doi.org/10.1038/nmeth.1233; PMID: 18604216
  • Baddeley A. Spatial Point Process Modelling and Its Applications. Castellón de la Plana; Universitat Jaume I; 2004.
  • Kagan YY. Earthquake spatial distribution: the correlation dimension. Geophys J Int 2007; 168:1175 - 94; http://dx.doi.org/10.1111/j.1365-246X.2006.03251.x