663
Views
2
CrossRef citations to date
0
Altmetric
Review

Regulation of active genome integrity and expression by Rad26p

&
Pages 520-526 | Received 14 Jul 2014, Accepted 25 Aug 2014, Published online: 31 Oct 2014

References

  • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992; 71:939-53; PMID:1339317; http://dx.doi.org/10.1016/0092-8674(92)90390-X
  • van Gool AJ, Verhage R, Swagemakers SM, van de Putte P, Brouwer J, Troelstra C, Bootsma D, Hoeijmakers JH. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J 1994; 13:5361-9; PMID:7957102
  • Jansen LE, den Dulk H, Brouns RM, de Ruijter M, Brandsma JA, Brouwer J. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J 2000; 19:6498-507; PMID:11101522; http://dx.doi.org/10.1093/emboj/19.23.6498
  • Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70; PMID:19023283; http://dx.doi.org/10.1038/nrm2549
  • Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim Biophys Acta 2013; 1829:151-7; PMID:22960598; http://dx.doi.org/10.1016/j.bbagrm.2012.08.002
  • Jaarsma D, van der Pluijm I, van der Horst GT, Hoeijmakers JH. Cockayne syndrome pathogenesis: lessons from mouse models. Mech Ageing Dev 2013; 134:180-95; PMID:23591128; http://dx.doi.org/10.1016/j.mad.2013.04.003
  • Selby CP, Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci U S A 1997; 94:11205-9; PMID:9326587; http://dx.doi.org/10.1073/pnas.94.21.11205
  • Dianov GL, Houle JF, Iyer N, Bohr VA, Friedberg EC. Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Res 1997; 25:3636-42; PMID:9278484; http://dx.doi.org/10.1093/nar/25.18.3636
  • Lee SK, Yu SL, Prakash L, Prakash S. Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol Cell Biol 2001; 21:8651-6; PMID:11713297; http://dx.doi.org/10.1128/MCB.21.24.8651-8656.2001
  • Lee SK, Yu SL, Prakash L, Prakash S. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol 2002; 22:4383-9; PMID:12024048; http://dx.doi.org/10.1128/MCB.22.12.4383-4389.2002
  • Malik S, Chaurasia P, Lahudkar S, Durairaj G, Shukla A, Bhaumik SR. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res 2010; 38:1461-77; PMID:20007604; http://dx.doi.org/10.1093/nar/gkp1147
  • Malik S, Chaurasia P, Lahudkar S, Uprety B, Bhaumik SR. Rad26p regulates the occupancy of histone H2A-H2B dimer at the active genes in vivo. Nucleic Acids Res 2012; 40:3348-63; PMID:22199252; http://dx.doi.org/10.1093/nar/gkr1244
  • Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010; 38:96-109; PMID:20019356; http://dx.doi.org/10.1177/0192623309356453
  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39-85; PMID:15189136; http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723
  • Feuerhahn S, Egly JM. Tools to study DNA repair: what's in the box? Trends Genet 2008; 24:467-74; PMID:18675488; http://dx.doi.org/10.1016/j.tig.2008.07.003
  • Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington DC: ASM Press (1995).
  • Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411:366-74; PMID:11357144; http://dx.doi.org/10.1038/35077232
  • Seeberg E, Eide L, Bjørås M. The base excision repair pathway. Trends Biochem Sci 1995; 20:391-7; PMID:8533150; http://dx.doi.org/10.1016/S0968-0004(00)89086-6
  • Krokan HE, Bjørås M. Base excision repair. Cold Spring Harb Perspect Biol 2013; 5:a012583; PMID:23545420; http://dx.doi.org/10.1101/cshpers-pect.a012583
  • Kanaar R, Hoeijmakers JH, van Gent DC. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 1998; 8:483-9; PMID:9861670; http://dx.doi.org/10.1016/S0962-8924(98)01383-X
  • Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 2001; 8:1163-74; PMID:11779493; http://dx.doi.org/10.1016/S1097-2765(01)00419-1
  • Ohnishi T, Mori E, Takahashi A. DNA double-strand breaks: their production, recognition, and repair in eukaryotes. Mutat Res 2009; 669:8-12; PMID:19576233; http://dx.doi.org/10.1016/j.mrfmmm.2009.06.010
  • Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet 2011; 45:247-71; PMID:21910633; http://dx.doi.org/10.1146/annurev-genet-110410-132435
  • Cahill D, Connor B, Carney JP. Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 2006; 11:1958-76; PMID:16368571; http://dx.doi.org/10.2741/1938
  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 1985; 40:359-69; PMID:3838150; http://dx.doi.org/10.1016/0092-8674(85)90150-3
  • Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 1987; 51:241-9; PMID:3664636; http://dx.doi.org/10.1016/0092-8674(87)90151-6
  • Christians FC, Hanawalt PC. Inhibition of transcription and strand-specific DNA repair by alpha-amanitin in Chinese hamster ovary cells. Mutat Res 1992; 274:93-101; PMID:1378211; http://dx.doi.org/10.1016/0921-8777(92)90056-9
  • Sweder KS, Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci U S A 1992; 89:10696-700; PMID:1438266; http://dx.doi.org/10.1073/pnas.89.22.10696
  • Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. Prog Mol Biol Transl Sci 2012; 110:25-40; PMID:22749141; http://dx.doi.org/10.1016/B978-0-12-387665-2.00002-X
  • Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S, Hazra TK. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 2011; 286:6006-16; PMID:21169365; http://dx.doi.org/10.1074/jbc.M110.198796
  • Chaurasia P, Sen R, Pandita TK, Bhaumik SR. Preferential repair of DNA double-strand break at the active gene in vivo. J Biol Chem 2012; 287:36414-22; PMID:22910905; http://dx.doi.org/10.1074/jbc.M112.364661
  • Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361:1475-85; PMID:19812404; http://dx.doi.org/10.1056/NEJMra0804615
  • Andressoo JO, Hoeijmakers JH. Transcription-coupled repair and premature ageing. Mutat Res 2005; 577:179-94; PMID:16009385; http://dx.doi.org/10.1016/j.mrfmmm.2005.04.004
  • Diderich K, Alanazi M, Hoeijmakers JH. Premature aging and cancer in nucleotide excision repair-disorders. DNA Repair (Amst) 2011; 10:772-80; PMID:21680258; http://dx.doi.org/10.1016/j.dnarep.2011.04.025
  • Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60; PMID:23518175; http://dx.doi.org/10.1016/j.mad.2013.03.001
  • Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci U S A 2002; 99:4239-44; PMID:11904382; http://dx.doi.org/10.1073/pnas.072068399
  • van den Boom V, Jaspers NG, Vermeulen W. When machines get stuck–obstructed RNA polymerase II: displacement, degradation or suicide. Bioessays 2002; 24:780-4; PMID:12210513; http://dx.doi.org/10.1002/bies.10150
  • Selby CP, Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993; 260:53-8; PMID:8465200; http://dx.doi.org/10.1126/science.8465200
  • Selby CP, Sancar A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem 1997; 272:1885-90; PMID:8999876; http://dx.doi.org/10.1074/jbc.272.3.1885
  • Ghosh-Roy S, Das D, Chowdhury D, Smerdon MJ, Chaudhuri RN. Rad26, the transcription-coupled repair factor in yeast, is required for removal of stalled RNA polymerase-II following UV irradiation. PLoS One 2013; 8:e72090; PMID:23991048; http://dx.doi.org/10.1371/journal.pone.0072090
  • Lainé JP, Egly JM. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J 2006; 25:387-97; PMID:16407975; http://dx.doi.org/10.1038/sj.emboj.7600933
  • Svejstrup JQ. The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 2010; 35:333-8; PMID:20194025; http://dx.doi.org/10.1016/j.tibs.2010.02.001
  • Vermeulen W, Fousteri M. Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 2013; 5:a012625; PMID:23906714; http://dx.doi.org/10.1101/cshperspect.a012625
  • Lake RJ, Geyko A, Hemashettar G, Zhao Y, Fan HY. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol Cell 2010; 37:235-46; PMID:20122405; http://dx.doi.org/10.1016/j.molcel.2009.10.027
  • Tantin D, Kansal A, Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell Biol 1997; 17:6803-14; PMID:9372911
  • Somesh BP, Reid J, Liu WF, Søgaard TM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005; 121:913-23; PMID:15960978; http://dx.doi.org/10.1016/j.cell.2005.04.010
  • Harreman M, Taschner M, Sigurdsson S, Anindya R, Reid J, Somesh B, Kong SE, Banks CA, Conaway RC, Conaway JW, et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc Natl Acad Sci U S A 2009; 106:20705-10; PMID:19920177; http://dx.doi.org/10.1073/pnas.0907052106
  • Malik S, Bagla S, Chaurasia P, Duan Z, Bhaumik SR. Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo. J Biol Chem 2008; 283:6897-905; PMID:18195014; http://dx.doi.org/10.1074/jbc.M707649200
  • Daulny A, Tansey WP. Damage control: DNA repair, transcription, and the ubiquitin-proteasome system. DNA Repair (Amst) 2009; 8:444-8; PMID:19272841; http://dx.doi.org/10.1016/j.dnarep.2009.01.017
  • Svejstrup JQ. Rescue of arrested RNA polymerase II complexes. J Cell Sci 2003; 116:447-51; PMID:12508106; http://dx.doi.org/10.1242/jcs.00271
  • Tornaletti S. DNA repair in mammalian cells: Transcription-coupled DNA repair: directing your effort where it's most needed. Cell Mol Life Sci 2009; 66:1010-20; PMID:19153656; http://dx.doi.org/10.1007/s00018-009-8738-x
  • Woudstra EC, Gilbert C, Fellows J, Jansen L, Brouwer J, Erdjument-Bromage H, Tempst P, Svejstrup JQ. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002; 415:929-33; PMID:11859374; http://dx.doi.org/10.1038/415929a
  • Luo Z, Zheng J, Lu Y, Bregman DB. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat Res 2001; 486:259-74; PMID:11516929; http://dx.doi.org/10.1016/S0921-8777(01)00097-0
  • Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem 1998; 273:5184-9; PMID:9478972; http://dx.doi.org/10.1074/jbc.273.9.5184
  • Escargueil AE, Poindessous V, Soares DG, Sarasin A, Cook PR, Larsen AK. Influence of irofulven, a transcription-coupled repair-specific antitumor agent, on RNA polymerase activity, stability and dynamics in living mammalian cells. J Cell Sci 2008; 121:1275-83; PMID:18388315; http://dx.doi.org/10.1242/jcs.023259
  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002; 415:180-3; PMID:11805837; http://dx.doi.org/10.1038/415180a
  • Sung P, Prakash L, Matson SW, Prakash S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A 1987; 84:8951-5; PMID:2827162; http://dx.doi.org/10.1073/pnas.84.24.8951
  • Cho I, Tsai PF, Lake RJ, Basheer A, Fan HY. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet 2013; 9:e1003407; PMID:23637612; http://dx.doi.org/10.1371/journal.pgen.1003407
  • Aamann MD, Muftuoglu M, Bohr VA, Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech Ageing Dev 2013; 134:212-24; PMID:23583689; http://dx.doi.org/10.1016/j.mad.2013.03.009
  • Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42; PMID:23562425; http://dx.doi.org/10.1016/j.mad.2013.03.004
  • Lehmann AR. Three complementation groups in Cockayne syndrome. Mutat Res 1982; 106:347-56; PMID:6185841; http://dx.doi.org/10.1016/0027-5107(82)90115-4
  • Mayne LV, Lehmann AR. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res 1982; 42:1473-8; PMID:6174225
  • Proietti-De-Santis L, Drané P, Egly JM. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 2006; 25:1915-23; PMID:16601682; http://dx.doi.org/10.1038/sj.emboj.7601071
  • van Gool AJ, Citterio E, Rademakers S, van Os R, Vermeulen W, Constantinou A, Egly JM, Bootsma D, Hoeijmakers JH. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J 1997; 16:5955-65; PMID:9312053; http://dx.doi.org/10.1093/emboj/16.19.5955
  • Balajee AS, May A, Dianov GL, Friedberg EC, Bohr VA. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc Natl Acad Sci U S A 1997; 94:4306-11; PMID:9113985; http://dx.doi.org/10.1073/pnas.94.9.4306
  • Chaurasia P, Sen R, Bhaumik SR. Functional analysis of Rad14p, a DNA damage recognition factor in nucleotide excision repair, in regulation of transcription in vivo. J Biol Chem 2013; 288:793-806; PMID:23188830; http://dx.doi.org/10.1074/jbc.M112.413716
  • Malik S, Bhaumik SR. Rad26p, a transcription-coupled repair factor, promotes the eviction and prevents the reassociation of histone H2A-H2B dimer during transcriptional elongation in vivo. Biochemistry 2012; 51:5873-5; PMID:22794311; http://dx.doi.org/10.1021/bi3005768
  • Durairaj G, Chaurasia P, Lahudkar S, Malik S, Shukla A, Bhaumik SR. Regulation of chromatin assembly/disassembly by Rtt109p, a histone H3 Lys56-specific acetyltransferase, in vivo. J Biol Chem 2010; 285:30472-9; PMID:20668333; http://dx.doi.org/10.1074/jbc.M110.113225
  • Andrews AJ, Chen X, Zevin A, Stargell LA, Luger K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol Cell 2010; 37:834-42; PMID:20347425; http://dx.doi.org/10.1016/j.molcel.2010.01.037
  • Citterio E, Van Den Boom V, Schnitzler G, Kanaar R, Bonte E, Kingston RE, Hoeijmakers JH, Vermeulen W. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol 2000; 20:7643-53; PMID:11003660; http://dx.doi.org/10.1128/MCB.20.20.7643-7653.2000
  • Taschner M, Harreman M, Teng Y, Gill H, Anindya R, Maslen SL, Skehel JM, Waters R, Svejstrup JQ. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 2010; 30:436-46; PMID:19901073; http://dx.doi.org/10.1128/MCB.00822-09

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.