1,422
Views
45
CrossRef citations to date
0
Altmetric
Review

Trial Watch

Adoptive cell transfer for anticancer immunotherapy

, , , , , , & show all
Article: e24238 | Received 08 Mar 2013, Accepted 08 Mar 2013, Published online: 01 May 2013

References

  • Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol 2011; 8:577 - 85; http://dx.doi.org/10.1038/nrclinonc.2011.116; PMID: 21808266
  • Rosenberg SA. Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 2012; 4:ps8; http://dx.doi.org/10.1126/scitranslmed.3003634; PMID: 22461638
  • Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol 2011; 29:4828 - 36; http://dx.doi.org/10.1200/JCO.2011.38.0899; PMID: 22042955
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299 - 308; http://dx.doi.org/10.1038/nrc2355; PMID: 18354418
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12:269 - 81; http://dx.doi.org/10.1038/nri3191; PMID: 22437939
  • Margolin K. Ipilimumab in a Phase II trial of melanoma patients with brain metastases. Oncoimmunology 2012; 1:1197 - 9; http://dx.doi.org/10.4161/onci.20687; PMID: 23170278
  • Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1:1223 - 5; http://dx.doi.org/10.4161/onci.21335; PMID: 23243584
  • Beyer M. Interleukin-2 treatment of tumor patients can expand regulatory T cells. Oncoimmunology 2012; 1:1181 - 2; http://dx.doi.org/10.4161/onci.20639; PMID: 23170272
  • Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, et al. Trial Watch: Monoclonal antibodies in cancer therapy. OncoImmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789
  • Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28 - 37; http://dx.doi.org/10.4161/onci.1.1.17938; PMID: 22720209
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493 - 506; http://dx.doi.org/10.4161/onci.20459; PMID: 22754768
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, et al. Trial Watch: DNA vaccines for cancer therapy. OncoImmunology 2013; 2:e23803
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, et al. Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 2011; 23:21 - 7; http://dx.doi.org/10.1016/j.smim.2011.01.004; PMID: 21277223
  • Ueno H, Palucka AK, Banchereau J. The expanding family of dendritic cell subsets. Nat Biotechnol 2010; 28:813 - 5; http://dx.doi.org/10.1038/nbt0810-813; PMID: 20697407
  • Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010; 33:464 - 78; http://dx.doi.org/10.1016/j.immuni.2010.10.007; PMID: 21029958
  • Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer 2010; 10:213 - 21; http://dx.doi.org/10.1038/nrc2804; PMID: 20168320
  • Barriga F, Ramírez P, Wietstruck A, Rojas N. Hematopoietic stem cell transplantation: clinical use and perspectives. Biol Res 2012; 45:307 - 16; http://dx.doi.org/10.4067/S0716-97602012000300012; PMID: 23283440
  • Bouquié R, Bonnin A, Bernardeau K, Khammari A, Dréno B, Jotereau F, et al. A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes. Cancer Immunol Immunother 2009; 58:553 - 66; http://dx.doi.org/10.1007/s00262-008-0578-2; PMID: 18751701
  • Yun YS, Hargrove ME, Ting CC. In vivo antitumor activity of anti-CD3-induced activated killer cells. Cancer Res 1989; 49:4770 - 4; PMID: 2527087
  • Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2012; 22:14 - 22; http://dx.doi.org/10.1016/j.semcancer.2011.12.006; PMID: 22210183
  • Liu K, Rosenberg SA. Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001; 167:6356 - 65; PMID: 11714800
  • Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 2005; 175:7046 - 52; PMID: 16272366
  • Kalbasi A, Shrimali RK, Chinnasamy D, Rosenberg SA. Prevention of interleukin-2 withdrawal-induced apoptosis in lymphocytes retrovirally cotransduced with genes encoding an antitumor T-cell receptor and an antiapoptotic protein. J Immunother 2010; 33:672 - 83; http://dx.doi.org/10.1097/CJI.0b013e3181e475cd; PMID: 20664359
  • Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, Huang J, et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 2011; 117:808 - 14; http://dx.doi.org/10.1182/blood-2010-05-286286; PMID: 20971955
  • Bellone M, Calcinotto A, Corti A. Won’t you come on in? How to favor lymphocyte infiltration in tumors. Oncoimmunology 2012; 1:986 - 8; http://dx.doi.org/10.4161/onci.20213; PMID: 23162781
  • Kershaw MH, Teng MW, Smyth MJ, Darcy PK. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol 2005; 5:928 - 40; http://dx.doi.org/10.1038/nri1729; PMID: 16322746
  • Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M. How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 2012; 1:1577 - 83; http://dx.doi.org/10.4161/onci.22524; PMID: 23264903
  • Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29:550 - 7; http://dx.doi.org/10.1016/j.tibtech.2011.04.009; PMID: 21663987
  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319:1676 - 80; http://dx.doi.org/10.1056/NEJM198812223192527; PMID: 3264384
  • Olurinde MO, Shen CH, Drake A, Bai A, Chen J. Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent. Cell Mol Immunol 2011; 8:415 - 23; http://dx.doi.org/10.1038/cmi.2011.18; PMID: 21666707
  • Song A, Tang X, Harms KM, Croft M. OX40 and Bcl-xL promote the persistence of CD8 T cells to recall tumor-associated antigen. J Immunol 2005; 175:3534 - 41; PMID: 16148096
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162 - 74; http://dx.doi.org/10.1038/nri2506; PMID: 19197294
  • Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother 2012; 35:107 - 15; http://dx.doi.org/10.1097/CJI.0b013e318242169f; PMID: 22306898
  • Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J 2010; 16:348 - 53; http://dx.doi.org/10.1097/PPO.0b013e3181eb3358; PMID: 20693846
  • Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev 2011; 241:63 - 76; http://dx.doi.org/10.1111/j.1600-065X.2011.01004.x; PMID: 21488890
  • Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011; 241:260 - 8; http://dx.doi.org/10.1111/j.1600-065X.2011.01018.x; PMID: 21488902
  • Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F, et al. Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 2012; 119:5688 - 96; http://dx.doi.org/10.1182/blood-2011-10-386482; PMID: 22555974
  • Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J Immunol 2012; 189:5147 - 54; http://dx.doi.org/10.4049/jimmunol.1200274; PMID: 23100512
  • Pere H, Tanchot C, Bayry J, Terme M, Taieb J, Badoual C, et al. Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncoimmunology 2012; 1:326 - 33; http://dx.doi.org/10.4161/onci.18852; PMID: 22737608
  • Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202:907 - 12; http://dx.doi.org/10.1084/jem.20050732; PMID: 16203864
  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005; 26:111 - 7; http://dx.doi.org/10.1016/j.it.2004.12.003; PMID: 15668127
  • Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 2010; 33:1 - 7; http://dx.doi.org/10.1097/CJI.0b013e3181b88ffc; PMID: 19952961
  • Tartour E, Latour S, Mathiot C, Thiounn N, Mosseri V, Joyeux I, et al. Variable expression of CD3-zeta chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. Int J Cancer 1995; 63:205 - 12; http://dx.doi.org/10.1002/ijc.2910630210; PMID: 7591205
  • Tartour E, Mathiot C, Fridman WH. Current status of interleukin-2 therapy in cancer. Biomed Pharmacother 1992; 46:473 - 84; http://dx.doi.org/10.1016/0753-3322(92)90005-R; PMID: 1306361
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 2006; 107:2409 - 14; http://dx.doi.org/10.1182/blood-2005-06-2399; PMID: 16304057
  • Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011; 365:2067 - 77; http://dx.doi.org/10.1056/NEJMoa1105143; PMID: 22129253
  • Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP 3rd, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011; 365:2055 - 66; http://dx.doi.org/10.1056/NEJMoa1108188; PMID: 22129252
  • Mignot G, Ullrich E, Bonmort M, Ménard C, Apetoh L, Taieb J, et al. The critical role of IL-15 in the antitumor effects mediated by the combination therapy imatinib and IL-2. J Immunol 2008; 180:6477 - 83; PMID: 18453565
  • Ullrich E, Bonmort M, Mignot G, Jacobs B, Bosisio D, Sozzani S, et al. Trans-presentation of IL-15 dictates IFN-producing killer dendritic cells effector functions. J Immunol 2008; 180:7887 - 97; PMID: 18523252
  • Liu DL, Håkansson CH, Seifert J. Immunotherapy in liver tumors: II. Intratumoral injection with activated tumor-infiltrating lymphocytes, intrasplenic administration of recombinant interleukin-2 and interferon alpha causes tumor regression and lysis. Cancer Lett 1994; 85:39 - 46; http://dx.doi.org/10.1016/0304-3835(94)90236-4; PMID: 7923100
  • Helms MW, Prescher JA, Cao YA, Schaffert S, Contag CH. IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy. Cancer Immunol Immunother 2010; 59:1325 - 34; http://dx.doi.org/10.1007/s00262-010-0860-y; PMID: 20532883
  • Dings RP, Vang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, et al. Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin Cancer Res 2011; 17:3134 - 45; http://dx.doi.org/10.1158/1078-0432.CCR-10-2443; PMID: 21252159
  • Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010; 70:6171 - 80; http://dx.doi.org/10.1158/0008-5472.CAN-10-0153; PMID: 20631075
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res 2007; 13:5280 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-07-1378; PMID: 17875756
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Yang Y, Huang CT, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5:508 - 15; http://dx.doi.org/10.1038/ni1059; PMID: 15064759
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573 - 7; http://dx.doi.org/10.1126/science.1208347; PMID: 22174255
  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678 - 84; http://dx.doi.org/10.1126/science.1224922; PMID: 23019653
  • Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 2008; 358:2698 - 703; http://dx.doi.org/10.1056/NEJMoa0800251; PMID: 18565862
  • Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y, et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 2011; 17:4987 - 95; http://dx.doi.org/10.1158/1078-0432.CCR-11-0207; PMID: 21690573
  • de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7:411 - 23; http://dx.doi.org/10.1016/j.ccr.2005.04.014; PMID: 15894262
  • Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A 2011; 108:10662 - 7; http://dx.doi.org/10.1073/pnas.1100994108; PMID: 21670304
  • Lister J, Rybka WB, Donnenberg AD, deMagalhaes-Silverman M, Pincus SM, Bloom EJ, et al. Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate posttransplant period. Clin Cancer Res 1995; 1:607 - 14; PMID: 9816022
  • Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 2011; 17:6287 - 97; http://dx.doi.org/10.1158/1078-0432.CCR-11-1347; PMID: 21844012
  • Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 2008; 181:3449 - 55; PMID: 18714017
  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295:2097 - 100; http://dx.doi.org/10.1126/science.1068440; PMID: 11896281
  • Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21:525 - 30; http://dx.doi.org/10.1016/j.coi.2009.07.015; PMID: 19717293
  • Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 2010; 16:2646 - 55; http://dx.doi.org/10.1158/1078-0432.CCR-10-0041; PMID: 20406835
  • Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM. Characterization and comparison of “Standard” and “Young” tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institution. Scand J Immunol 2011; In press PMID: 21955245
  • Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16:6122 - 31; http://dx.doi.org/10.1158/1078-0432.CCR-10-1297; PMID: 20668005
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial Watch: Cardiac glycosides and cancer therapy. OncoImmunology 2013; 2:e23082; http://dx.doi.org/10.4161/onci.23082
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. OncoImmunology 2013; 2:e23510; http://dx.doi.org/10.4161/onci.23510; PMID: 22720239
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Hardy NM, Fellowes V, Rose JJ, Odom J, Pittaluga S, Steinberg SM, et al. Costimulated tumor-infiltrating lymphocytes are a feasible and safe alternative donor cell therapy for relapse after allogeneic stem cell transplantation. Blood 2012; 119:2956 - 9; http://dx.doi.org/10.1182/blood-2011-09-378398; PMID: 22289893
  • Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA, et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 2012; 23:444 - 50; http://dx.doi.org/10.1089/hum.2011.167; PMID: 22107246
  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119:2709 - 20; http://dx.doi.org/10.1182/blood-2011-10-384388; PMID: 22160384
  • Meij P, Jedema I, van der Hoorn MA, Bongaerts R, Cox L, Wafelman AR, et al. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 2012; 97:1205 - 8; http://dx.doi.org/10.3324/haematol.2011.053371; PMID: 22511490
  • Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119:3940 - 50; http://dx.doi.org/10.1182/blood-2011-10-387969; PMID: 22308288
  • Linn YC, Niam M, Chu S, Choong A, Yong HX, Heng KK, et al. The anti-tumour activity of allogeneic cytokine-induced killer cells in patients who relapse after allogeneic transplant for haematological malignancies. Bone Marrow Transplant 2012; 47:957 - 66; http://dx.doi.org/10.1038/bmt.2011.202; PMID: 21986635
  • Grupp SA, Prak EL, Boyer J, McDonald KR, Shusterman S, Thompson E, et al. Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clin Cancer Res 2012; 18:6732 - 41; http://dx.doi.org/10.1158/1078-0432.CCR-12-1432; PMID: 23092876
  • Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met O, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med 2012; 10:169; http://dx.doi.org/10.1186/1479-5876-10-169; PMID: 22909342
  • Kandalaft LE, Powell DJ Jr., Coukos G. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 2012; 10:157; http://dx.doi.org/10.1186/1479-5876-10-157; PMID: 22863016
  • Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, et al. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res 2012; 72:1116 - 25; http://dx.doi.org/10.1158/0008-5472.CAN-11-3399; PMID: 22282657
  • Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer 2011; 2:363 - 8; http://dx.doi.org/10.7150/jca.2.363; PMID: 21716717
  • Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011; 17:4550 - 7; http://dx.doi.org/10.1158/1078-0432.CCR-11-0116; PMID: 21498393
  • Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4:32ra53; http://dx.doi.org/10.1126/scitranslmed.3003761; PMID: 22553251
  • Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467:318 - 22; http://dx.doi.org/10.1038/nature09328; PMID: 20844535
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118:3132 - 42; http://dx.doi.org/10.1172/JCI35700; PMID: 18688285
  • Brimnes MK, Gang AO, Donia M, Thor Straten P, Svane IM, Hadrup SR. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion. Cancer Immunol Immunother 2012; 61:1221 - 31; http://dx.doi.org/10.1007/s00262-011-1199-8; PMID: 22237888
  • Rubinstein MP, Cloud CA, Garrett TE, Moore CJ, Schwartz KM, Johnson CB, et al. Ex vivo interleukin-12-priming during CD8(+) T cell activation dramatically improves adoptive T cell transfer antitumor efficacy in a lymphodepleted host. J Am Coll Surg 2012; 214:700 - 7, discussion 707-8; http://dx.doi.org/10.1016/j.jamcollsurg.2011.12.034; PMID: 22360982
  • Hervas-Stubbs S, Mancheño U, Riezu-Boj JI, Larraga A, Ochoa MC, Alignani D, et al. CD8 T cell priming in the presence of IFN-α renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J Immunol 2012; 189:3299 - 310; http://dx.doi.org/10.4049/jimmunol.1102495; PMID: 22925929
  • Donia M, Hansen M, Sendrup SL, Iversen TZ, Ellebæk E, Andersen MH, et al. Methods to improve adoptive T-cell therapy for melanoma: IFN-γ enhances anticancer responses of cell products for infusion. J Invest Dermatol 2013; 133:545 - 52; http://dx.doi.org/10.1038/jid.2012.336; PMID: 23014345
  • Santegoets SJ, Turksma AW, Suhoski MM, Stam AG, Albelda SM, Hooijberg E, et al. IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J Transl Med 2013; 11:37; http://dx.doi.org/10.1186/1479-5876-11-37; PMID: 23402380
  • Montinaro A, Forte G, Sorrentino R, Luciano A, Palma G, Arra C, et al. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice. PLoS One 2012; 7:e45401; http://dx.doi.org/10.1371/journal.pone.0045401; PMID: 23028986
  • Zhou Q, Schneider IC, Edes I, Honegger A, Bach P, Schönfeld K, et al. T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood 2012; 120:4334 - 42; http://dx.doi.org/10.1182/blood-2012-02-412973; PMID: 22898597
  • Lutz-Nicoladoni C, Wallner S, Stoitzner P, Pircher M, Gruber T, Wolf AM, et al. Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine. Immunol Cell Biol 2012; 90:130 - 4; http://dx.doi.org/10.1038/icb.2011.11; PMID: 21383769
  • Stromnes IM, Fowler C, Casamina CC, Georgopolos CM, McAfee MS, Schmitt TM, et al. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. J Immunol 2012; 189:1812 - 25; http://dx.doi.org/10.4049/jimmunol.1200552; PMID: 22798667
  • Kunii N, Zhao Y, Jiang S, Liu X, Scholler J, Balagopalan L, et al. Enhanced function of redirected human T cells expressing linker for activation of T cells that is resistant to ubiquitylation. Hum Gene Ther 2013; 24:27 - 37; http://dx.doi.org/10.1089/hum.2012.130; PMID: 22998346
  • Grange M, Buferne M, Verdeil G, Leserman L, Schmitt-Verhulst AM, Auphan-Anezin N. Activated STAT5 promotes long-lived cytotoxic CD8+ T cells that induce regression of autochthonous melanoma. Cancer Res 2012; 72:76 - 87; http://dx.doi.org/10.1158/0008-5472.CAN-11-2187; PMID: 22065720
  • Mehrotra S, Al-Khami AA, Klarquist J, Husain S, Naga O, Eby JM, et al. A coreceptor-independent transgenic human TCR mediates anti-tumor and anti-self immunity in mice. J Immunol 2012; 189:1627 - 38; http://dx.doi.org/10.4049/jimmunol.1103271; PMID: 22798675
  • Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 2012; 18:1672 - 83; http://dx.doi.org/10.1158/1078-0432.CCR-11-3050; PMID: 22291136
  • Goldstein MJ, Kohrt HE, Houot R, Varghese B, Lin JT, Swanson E, et al. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells. Cancer Res 2012; 72:1239 - 47; http://dx.doi.org/10.1158/0008-5472.CAN-11-3375; PMID: 22232735
  • Joly E, Hudrisier D. What is trogocytosis and what is its purpose?. Nat Immunol 2003; 4:815; http://dx.doi.org/10.1038/ni0903-815; PMID: 12942076
  • Brown R, Suen H, Favaloro J, Yang S, Ho PJ, Gibson J, et al. Trogocytosis generates acquired regulatory T cells adding further complexity to the dysfunctional immune response in multiple myeloma. Oncoimmunology 2012; 1:1658 - 60; http://dx.doi.org/10.4161/onci.22032; PMID: 23264928
  • Somanchi SS, Somanchi A, Cooper LJ, Lee DA. Engineering lymph node homing of ex vivo-expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 2012; 119:5164 - 72; http://dx.doi.org/10.1182/blood-2011-11-389924; PMID: 22498742
  • Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2013; 31:71 - 5; http://dx.doi.org/10.1038/nbt.2459; PMID: 23242161
  • Morgan RA. Faster, cheaper, safer, T-cell engineering. J Immunother 2013; 36:1 - 2; http://dx.doi.org/10.1097/CJI.0b013e3182791257; PMID: 23211627
  • Morgan RA, Dudley ME, Rosenberg SA. Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 2010; 16:336 - 41; http://dx.doi.org/10.1097/PPO.0b013e3181eb3879; PMID: 20693844
  • Liu C, Lewis CM, Lou Y, Xu C, Peng W, Yang Y, et al. Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J Immunother 2012; 35:276 - 82; http://dx.doi.org/10.1097/CJI.0b013e31824e7f43; PMID: 22421945
  • Noji S, Hosoi A, Takeda K, Matsushita H, Morishita Y, Seto Y, et al. Targeting spatiotemporal expression of CD137 on tumor-infiltrating cytotoxic T lymphocytes as a novel strategy for agonistic antibody therapy. J Immunother 2012; 35:460 - 72; http://dx.doi.org/10.1097/CJI.0b013e31826092db; PMID: 22735804
  • Ju SA, Park SM, Lee YS, Bae JH, Yu R, An WG, et al. Administration of 6-gingerol greatly enhances the number of tumor-infiltrating lymphocytes in murine tumors. Int J Cancer 2012; 130:2618 - 28; http://dx.doi.org/10.1002/ijc.26316; PMID: 21792901
  • Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res 2012; 72:5209 - 18; http://dx.doi.org/10.1158/0008-5472.CAN-12-1187; PMID: 22915761
  • Koya RC, Mok S, Otte N, Blacketor KJ, Comin-Anduix B, Tumeh PC, et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 2012; 72:3928 - 37; http://dx.doi.org/10.1158/0008-5472.CAN-11-2837; PMID: 22693252
  • Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 2013; 19:393 - 403; http://dx.doi.org/10.1158/1078-0432.CCR-12-1626; PMID: 23204132
  • Abe BT, Shin DS, Mocholi E, Macian F. NFAT1 supports tumor-induced anergy of CD4(+) T cells. Cancer Res 2012; 72:4642 - 51; http://dx.doi.org/10.1158/0008-5472.CAN-11-3775; PMID: 22865456
  • Stark FC, Gurnani K, Sad S, Krishnan L. Lack of functional selectin ligand interactions compromises long term tumor protection by CD8+ T cells. PLoS One 2012; 7:e32211; http://dx.doi.org/10.1371/journal.pone.0032211; PMID: 22359671
  • André MC, Sigurdardottir D, Kuttruff S, Pömmerl B, Handgretinger R, Rammensee HG, et al. Impaired tumor rejection by memory CD8 T cells in mice with NKG2D dysfunction. Int J Cancer 2012; 131:1601 - 10; http://dx.doi.org/10.1002/ijc.26191; PMID: 21607945
  • Dong H, Franklin NA, Roberts DJ, Yagita H, Glennie MJ, Bullock TN. CD27 stimulation promotes the frequency of IL-7 receptor-expressing memory precursors and prevents IL-12-mediated loss of CD8(+) T cell memory in the absence of CD4(+) T cell help. J Immunol 2012; 188:3829 - 38; http://dx.doi.org/10.4049/jimmunol.1103329; PMID: 22422886
  • Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, et al. The stoichiometric production of IL-2 and IFN-γ mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med 2012; 4:ra120; http://dx.doi.org/10.1126/scitranslmed.3004306; PMID: 22932225
  • Perna SK, De Angelis B, Pagliara D, Hasan ST, Zhang L, Mahendravada A, et al. Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 2013; 19:106 - 17; http://dx.doi.org/10.1158/1078-0432.CCR-12-2143; PMID: 23149818
  • Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490:412 - 6; http://dx.doi.org/10.1038/nature11538; PMID: 23051752
  • Hanagiri T, Shigematsu Y, Kuroda K, Baba T, Shiota H, Ichiki Y, et al. Antitumor activity of human γδ T cells transducted with CD8 and with T-cell receptors of tumor-specific cytotoxic T lymphocytes. Cancer Sci 2012; 103:1414 - 9; http://dx.doi.org/10.1111/j.1349-7006.2012.02337.x; PMID: 22621620
  • Zhao H, Xi X, Cui L, He W. CDR3δ -grafted γ9δ2T cells mediate effective antitumor reactivity. Cell Mol Immunol 2012; 9:147 - 54; http://dx.doi.org/10.1038/cmi.2011.28; PMID: 21909128
  • Zhou J, Kang N, Cui L, Ba D, He W. Anti-γδ TCR antibody-expanded γδ T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol 2012; 9:34 - 44; http://dx.doi.org/10.1038/cmi.2011.16; PMID: 21666706
  • Siegers GM. Anti-leukemia activity of human gamma delta T cells. Oncoimmunology 2012; 1:237 - 9; http://dx.doi.org/10.4161/onci.1.2.18231; PMID: 22720255
  • Galluzzi L, Lugli E. Rejuvenated T cells attack old tumors. OncoImmunology 2013; 2:e24103; http://dx.doi.org/10.4161/onci.24103
  • Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 2012; 12:671 - 84; http://dx.doi.org/10.1038/nrc3322; PMID: 22996603
  • Somerville RP, Dudley ME. Bioreactors get personal. Oncoimmunology 2012; 1:1435 - 7; http://dx.doi.org/10.4161/onci.21206; PMID: 23243620
  • Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 2013; 121:573 - 84; http://dx.doi.org/10.1182/blood-2012-05-431718; PMID: 23160470
  • Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, et al. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 2013; In press http://dx.doi.org/10.1172/JCI66327; PMID: 23281401
  • Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17:1290 - 7; http://dx.doi.org/10.1038/nm.2446; PMID: 21926977
  • Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12:114 - 26; http://dx.doi.org/10.1016/j.stem.2012.11.002; PMID: 23290140
  • Haymaker C, Wu R, Bernatchez C, Radvanyi L. PD-1 and BTLA and CD8(+) T-cell “exhaustion” in cancer: “Exercising” an alternative viewpoint. Oncoimmunology 2012; 1:735 - 8; http://dx.doi.org/10.4161/onci.20823; PMID: 22934265
  • Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 2013; 12:31 - 6; http://dx.doi.org/10.1016/j.stem.2012.12.006; PMID: 23290135
  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5:615 - 25; http://dx.doi.org/10.1038/nrc1669; PMID: 16034368
  • Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 2011; 11:111 - 21; http://dx.doi.org/10.1038/nrc3002; PMID: 21248786
  • Donia M, Fagone P, Nicoletti F, Andersen RS, Høgdall E, Straten PT, et al. BRAF inhibition improves tumor recognition by the immune system: Potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 2012; 1:1476 - 83; http://dx.doi.org/10.4161/onci.21940; PMID: 23264894
  • Wilmott JS, Scolyer RA, Long GV, Hersey P. Combined targeted therapy and immunotherapy in the treatment of advanced melanoma. Oncoimmunology 2012; 1:997 - 9; http://dx.doi.org/10.4161/onci.19865; PMID: 23189245
  • Waitz R, Fassò M, Allison JP. CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncoimmunology 2012; 1:544 - 6; http://dx.doi.org/10.4161/onci.19442; PMID: 22754781
  • Gerdemann U, Katari U, Christin AS, Cruz CR, Tripic T, Rousseau A, et al. Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 2011; 19:2258 - 68; http://dx.doi.org/10.1038/mt.2011.167; PMID: 21915103
  • Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9:463 - 75; http://dx.doi.org/10.1038/nrc2656; PMID: 19536107
  • Liu L, Sun M, Wang Z. Adoptive T-cell therapy of B-cell malignancies: conventional and physiological chimeric antigen receptors. Cancer Lett 2012; 316:1 - 5; http://dx.doi.org/10.1016/j.canlet.2011.10.027; PMID: 22099879
  • Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180:4901 - 9; PMID: 18354214
  • Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology 2012; 1:458 - 66; http://dx.doi.org/10.4161/onci.19855; PMID: 22754764
  • Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365:1673 - 83; http://dx.doi.org/10.1056/NEJMoa1106152; PMID: 22047558