1,517
Views
17
CrossRef citations to date
0
Altmetric
Review

Development of the kidney medulla

&
Pages 10-17 | Published online: 01 Jan 2012

References

  • Dudley JA, Haworth JM, McGraw ME, Frank JD, Tizard EJ. Clinical relevance and implications of antenatal hydronephrosis. Arch Dis Child Fetal Neonatal Ed 1997; 76:F31 - 4; http://dx.doi.org/10.1136/fn.76.1.F31; PMID: 9059183
  • Garne E, Loane M, Wellesley D, Barisic I, Eurocat Working Group. Congenital hydronephrosis: prenatal diagnosis and epidemiology in Europe. J Pediatr Urol 2009; 5:47 - 52; http://dx.doi.org/10.1016/j.jpurol.2008.08.010; PMID: 18977697
  • Chevalier RL. Pathophysiology of obstructive nephropathy in the newborn. Semin Nephrol 1998; 18:585 - 93; PMID: 9819149
  • Harold C. Renal and urological disorders. In: Williams L, Staff W, eds. Professional guide to diseases. 9. Springhouse: Springhouse Corp, 2009: 403-4.
  • Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C, EUROSCAN Study Group. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 2005; 48:131 - 44; http://dx.doi.org/10.1016/j.ejmg.2005.02.003; PMID: 16053904
  • Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, et al. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet 1996; 14:171 - 3; http://dx.doi.org/10.1038/ng1096-171; PMID: 8841187
  • Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 1996; 12:241 - 7; http://dx.doi.org/10.1038/ng0396-241; PMID: 8589713
  • Constantinou CE. Renal pelvic pacemaker control of ureteral peristaltic rate. Am J Physiol 1974; 226:1413 - 9; PMID: 4833997
  • Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon APA. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 2009; 136:161 - 71; http://dx.doi.org/10.1242/dev.022087; PMID: 19060336
  • Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 2010; 18:698 - 712; http://dx.doi.org/10.1016/j.devcel.2010.04.008; PMID: 20493806
  • Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2011; 26:353 - 64; http://dx.doi.org/10.1007/s00467-010-1629-4; PMID: 20798957
  • Mendelsohn C. Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis 2009; 5:306 - 14; PMID: 19568352
  • Gomez RA, Norwood VF, Tufro-McReddie A. Development of the kidney vasculature. Microsc Res Tech 1997; 39:254 - 60; http://dx.doi.org/10.1002/(SICI)1097-0029(19971101)39:3<254::AID-JEMT5>3.0.CO;2-K; PMID: 9372498
  • Sequeira Lopez ML, Gomez RA. Development of the Renal Arterioles. J Am Soc Nephrol 2011; 22:2156 - 65; PMID: 22052047
  • Cullen-McEwen LA, Caruana G, Bertram JF. The where, what and why of the developing renal stroma. Nephron Exp Nephrol 2005; 99:e1 - 8; http://dx.doi.org/10.1159/000081792; PMID: 15637462
  • Kriz W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 1981; 241:R3 - 16; PMID: 7018270
  • Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004; 114:795 - 804; PMID: 15372103
  • Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, et al. Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 2009; 20:2315 - 27; http://dx.doi.org/10.1681/ASN.2008111203; PMID: 19762493
  • Rosenblum ND. Developmental biology of the human kidney. Semin Fetal Neonatal Med 2008; 13:125 - 32; http://dx.doi.org/10.1016/j.siny.2007.10.005; PMID: 18096451
  • Cebrín C, Borodo K, Charles N, Herzlinger DA. Morphometric index of the developing murine kidney. Dev Dyn 2004; 231:601 - 8; http://dx.doi.org/10.1002/dvdy.20143; PMID: 15376282
  • Adams DC, Oxburgh L. The long-term label retaining population of the renal papilla arises through divergent regional growth of the kidney. Am J Physiol Renal Physiol 2009; 297:F809 - 15; http://dx.doi.org/10.1152/ajprenal.90650.2008; PMID: 19535568
  • Cano-Gauci DF, Song HH, Yang H, McKerlie C, Choo B, Shi W, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 1999; 146:255 - 64; PMID: 10402475
  • Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol 2001; 231:31 - 46; http://dx.doi.org/10.1006/dbio.2000.0127; PMID: 11180950
  • Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 1996; 122:3537 - 47; PMID: 8951069
  • Berry R, Harewood L, Pei L, Fisher M, Brownstein D, Ross A, et al. Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Hum Mol Genet 2011; 20:917 - 26; http://dx.doi.org/10.1093/hmg/ddq530; PMID: 21138943
  • Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND. BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 2008; 19:117 - 24; http://dx.doi.org/10.1681/ASN.2007010080; PMID: 18178801
  • Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 2004; 276:403 - 15; http://dx.doi.org/10.1016/j.ydbio.2004.09.002; PMID: 15581874
  • Zhang Z, Pascuet E, Hueber PA, Chu L, Bichet DG, Lee TC, et al. Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol 2010; 21:573 - 8; http://dx.doi.org/10.1681/ASN.2009070719; PMID: 20133479
  • Pietilä I, Ellwanger K, Railo A, Jokela T, Barrantes IdelB, Shan J, et al. Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev Biol 2011; 353:50 - 60; http://dx.doi.org/10.1016/j.ydbio.2011.02.019; PMID: 21354128
  • Cha JH, Kim YH, Jung JY, Han KH, Madsen KM, Kim J. Cell proliferation in the loop of henle in the developing rat kidney. J Am Soc Nephrol 2001; 12:1410 - 21; PMID: 11423570
  • Neiss WF. Histogenesis of the loop of Henle in the rat kidney. Anat Embryol (Berl) 1982; 164:315 - 30; http://dx.doi.org/10.1007/BF00315754; PMID: 7137581
  • Stubbe J, Madsen K, Nielsen FT, Skøtt O, Jensen BL. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am J Physiol Renal Physiol 2006; 291:F812 - 22; http://dx.doi.org/10.1152/ajprenal.00477.2005; PMID: 16638911
  • Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW. The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 2007; 21:2358 - 70; http://dx.doi.org/10.1101/gad.450707; PMID: 17875669
  • Mittaz L, Ricardo S, Martinez G, Kola I, Kelly DJ, Little MH, et al. Neonatal calyceal dilation and renal fibrosis resulting from loss of Adamts-1 in mouse kidney is due to a developmental dysgenesis. Nephrol Dial Transplant 2005; 20:419 - 23; http://dx.doi.org/10.1093/ndt/gfh603; PMID: 15615810
  • Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development 2003; 130:4751 - 9; http://dx.doi.org/10.1242/dev.00666; PMID: 12925600
  • Pannabecker TL, Dantzler WH. Three-dimensional architecture of inner medullary vasa recta. Am J Physiol Renal Physiol 2006; 290:F1355 - 66; http://dx.doi.org/10.1152/ajprenal.00481.2005; PMID: 16380456
  • Speller AM, Moffat DB. Tubulo-vascular relationships in the developing kidney. J Anat 1977; 123:487 - 500; PMID: 858697
  • Crivellato E. The role of angiogenic growth factors in organogenesis. Int J Dev Biol 2011; 55:365 - 75; http://dx.doi.org/10.1387/ijdb.103214ec; PMID: 21858761
  • Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 1998; 95:15496 - 501; http://dx.doi.org/10.1073/pnas.95.26.15496; PMID: 9860997
  • Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 1998; 101:755 - 60; http://dx.doi.org/10.1172/JCI1899; PMID: 9466969
  • Madsen K, Marcussen N, Pedersen M, Kjaersgaard G, Facemire C, Coffman TM, et al. Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J Am Soc Nephrol 2010; 21:448 - 59; http://dx.doi.org/10.1681/ASN.2009010045; PMID: 20056745
  • Daïkha-Dahmane F, Levy-Beff E, Jugie M, Lenclen R. Foetal kidney maldevelopment in maternal use of angiotensin II type I receptor antagonists. Pediatr Nephrol 2006; 21:729 - 32; http://dx.doi.org/10.1007/s00467-006-0070-1; PMID: 16565869
  • Matsui T, Kanai-Azuma M, Hara K, Matoba S, Hiramatsu R, Kawakami H, et al. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci 2006; 119:3513 - 26; http://dx.doi.org/10.1242/jcs.03081; PMID: 16895970
  • Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 2005; 37:964 - 8; http://dx.doi.org/10.1038/ng1623; PMID: 16116425
  • Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat 2010; 31:1352 - 9; http://dx.doi.org/10.1002/humu.21378; PMID: 20960469
  • Sparrow DB, Boyle SC, Sams RS, Mazuruk B, Zhang L, Moeckel GW, et al. Placental insufficiency associated with loss of Cited1 causes renal medullary dysplasia. J Am Soc Nephrol 2009; 20:777 - 86; http://dx.doi.org/10.1681/ASN.2008050547; PMID: 19297558
  • Freeburg PB, Robert B, St John PL, Abrahamson DR. Podocyte expression of hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J Am Soc Nephrol 2003; 14:927 - 38; http://dx.doi.org/10.1097/01.ASN.0000059308.82322.4F; PMID: 12660327
  • Freeburg PB, Abrahamson DR. Hypoxia-inducible factors and kidney vascular development. J Am Soc Nephrol 2003; 14:2723 - 30; http://dx.doi.org/10.1097/01.ASN.0000092794.37534.01; PMID: 14569081
  • Manotham K, Tanaka T, Ohse T, Kojima I, Miyata T, Inagi R, et al. A biologic role of HIF-1 in the renal medulla. Kidney Int 2005; 67:1428 - 39; http://dx.doi.org/10.1111/j.1523-1755.2005.00220.x; PMID: 15780095
  • Shah SR, Esni F, Jakub A, Paredes J, Lath N, Malek M, et al. Embryonic mouse blood flow and oxygen correlate with early pancreatic differentiation. Dev Biol 2011; 349:342 - 9; http://dx.doi.org/10.1016/j.ydbio.2010.10.033; PMID: 21050843
  • Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 2011; 121:2278 - 89; http://dx.doi.org/10.1172/JCI46322; PMID: 21606590
  • Klein G, Ekblom P. Extracellular matrix composition during kidney development. Contrib Nephrol 1990; 80:17 - 31; PMID: 2282818
  • Alcorn D, Maric C, McCausland J. Development of the renal interstitium. Pediatr Nephrol 1999; 13:347 - 54; http://dx.doi.org/10.1007/s004670050624; PMID: 10454789
  • Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 1996; 10:1467 - 78; http://dx.doi.org/10.1101/gad.10.12.1467; PMID: 8666231
  • Mason IJ, Fuller-Pace F, Smith R, Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev 1994; 45:15 - 30; http://dx.doi.org/10.1016/0925-4773(94)90050-7; PMID: 8186145
  • Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 1999; 126:5771 - 83; PMID: 10572052
  • Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000; 105:863 - 73; http://dx.doi.org/10.1172/JCI8256; PMID: 10749566
  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010; 176:85 - 97; http://dx.doi.org/10.2353/ajpath.2010.090517; PMID: 20008127
  • Bard JB. The metanephros. In, Vice P, Woolf A, Bard J: The kidney: from normal development to congenital disease. London, Academic Press 2003; 25: 181-193.
  • Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J. c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 2006; 299:238 - 49; http://dx.doi.org/10.1016/j.ydbio.2006.07.026; PMID: 16942767
  • Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 2010; 137:283 - 92; http://dx.doi.org/10.1242/dev.040287; PMID: 20040494
  • Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 1999; 126:547 - 54; PMID: 9876183
  • Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 1999; 126:1139 - 48; PMID: 10021334
  • Cui S, Schwartz L, Quaggin SE. Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn 2003; 226:512 - 22; http://dx.doi.org/10.1002/dvdy.10244; PMID: 12619136
  • Zhang P, Liégeois NJ, Wong C, Finegold M, Hou H, Thompson JC, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 1997; 387:151 - 8; http://dx.doi.org/10.1038/387151a0; PMID: 9144284
  • Schnabel CA, Godin RE, Cleary ML. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 2003; 254:262 - 76; http://dx.doi.org/10.1016/S0012-1606(02)00038-6; PMID: 12591246
  • Yosypiv IV. Vasoactive Factors and Blood Pressure in Children. In: Pediatric hypertension, 3rd edition. Edited by: J. T. Flynn. Springer, 23-40, 2010.
  • Pupilli C, Gomez RA, Tuttle JB, Peach MJ, Carey RM. Spatial association of renin-containing cells and nerve fibers in developing rat kidney. Pediatr Nephrol 1991; 5:690 - 5; http://dx.doi.org/10.1007/BF00857873; PMID: 1768580
  • Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 2005; 436:193 - 200; http://dx.doi.org/10.1038/nature03875; PMID: 16015319
  • Tiniakos D, Anagnostou V, Stavrakis S, Karandrea D, Agapitos E, Kittas C. Ontogeny of intrinsic innervation in the human kidney. Anat Embryol (Berl) 2004; 209:41 - 7; http://dx.doi.org/10.1007/s00429-004-0420-3; PMID: 15480775
  • Eppel GA, Luff SE, Denton KM, Evans RG. Type 1 neuropeptide Y receptors and alpha1-adrenoceptors in the neural control of regional renal perfusion. Am J Physiol Regul Integr Comp Physiol 2006; 290:R331 - 40; http://dx.doi.org/10.1152/ajpregu.00317.2005; PMID: 16195497
  • Karavanov A, Sainio K, Palgi J, Saarma M, Saxen L, Sariola H. Neurotrophin 3 rescues neuronal precursors from apoptosis and promotes neuronal differentiation in the embryonic metanephric kidney. Proc Natl Acad Sci U S A 1995; 92:11279 - 83; http://dx.doi.org/10.1073/pnas.92.24.11279; PMID: 7479979
  • Gendron L, Payet MD, Gallo-Payet N. The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J Mol Endocrinol 2003; 31:359 - 72; http://dx.doi.org/10.1677/jme.0.0310359; PMID: 14664700
  • Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol 2010; 298:F807 - 17; http://dx.doi.org/10.1152/ajprenal.00147.2009; PMID: 20032120
  • Kett MM, Denton KM. Renal programming: cause for concern?. Am J Physiol Regul Integr Comp Physiol 2011; 300:R791 - 803; http://dx.doi.org/10.1152/ajpregu.00791.2010; PMID: 21191002
  • Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 2004; 113:1051 - 8; PMID: 15057312
  • Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 2011; 121:1199 - 206; http://dx.doi.org/10.1172/JCI45523; PMID: 21339645
  • Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 1998; 102:1489 - 97; http://dx.doi.org/10.1172/JCI4401; PMID: 9788961
  • Yosypiv IV, Schroeder M, El-Dahr SS. Angiotensin II type 1 receptor-EGF receptor cross-talk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 2006; 17:1005 - 14; http://dx.doi.org/10.1681/ASN.2005080803; PMID: 16495379
  • Lacoste M, Cai Y, Guicharnaud L, Mounier F, Dumez Y, Bouvier R, et al. Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: Role of the Renin-Angiotensin system. J Am Soc Nephrol 2006; 17:2253 - 63; http://dx.doi.org/10.1681/ASN.2005121303; PMID: 16790508
  • Song R, Van Buren T, Yosypiv IV. Histone Deacetylases are Critical Regulators of the Renin-Angiotensin System During Ureteric Bud Branching Morphogenesis. Pediatric Research 2010; 67:573 - 8; http://dx.doi.org/10.1203/PDR.0b013e3181da477c; PMID: 20496471
  • Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, et al. Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 1996; 75:745 - 53; PMID: 8941219
  • Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 1996; 74:953 - 65; PMID: 8642790
  • Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999; 3:1 - 10; http://dx.doi.org/10.1016/S1097-2765(00)80169-0; PMID: 10024874

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.