1,547
Views
55
CrossRef citations to date
0
Altmetric
Special Focus Review

Extracellular matrix and cytoskeletal dynamics during branching morphogenesis

&
Pages 56-64 | Published online: 01 Apr 2012

References

  • Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126 - 40; http://dx.doi.org/10.1016/j.ydbio.2009.10.026; PMID: 19854168
  • Maruthamuthu V, Aratyn-Schaus Y, Gardel ML. Conserved F-actin dynamics and force transmission at cell adhesions. Curr Opin Cell Biol 2010; 22:583 - 8; http://dx.doi.org/10.1016/j.ceb.2010.07.010; PMID: 20728328
  • Martin AC. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol 2010; 341:114 - 25; http://dx.doi.org/10.1016/j.ydbio.2009.10.031; PMID: 19874815
  • Gorfinkiel N, Blanchard GB. Dynamics of actomyosin contractile activity during epithelial morphogenesis. Curr Opin Cell Biol 2011; 23:531 - 9; http://dx.doi.org/10.1016/j.ceb.2011.06.002; PMID: 21764278
  • Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV. The molecular basis of lung morphogenesis. Mech Dev 2000; 92:55 - 81; http://dx.doi.org/10.1016/S0925-4773(99)00325-1; PMID: 10704888
  • Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010; 18:8 - 23; http://dx.doi.org/10.1016/j.devcel.2009.12.010; PMID: 20152174
  • Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature 2008; 453:745 - 50; http://dx.doi.org/10.1038/nature07005; PMID: 18463632
  • Thomas T, Dziadek M. Expression of collagen α 1(IV), laminin and nidogen genes in the embryonic mouse lung: implications for branching morphogenesis. Mech Dev 1994; 45:193 - 201; http://dx.doi.org/10.1016/0925-4773(94)90007-8; PMID: 7516699
  • Mollard R, Dziadek M. A correlation between epithelial proliferation rates, basement membrane component localization patterns, and morphogenetic potential in the embryonic mouse lung. Am J Respir Cell Mol Biol 1998; 19:71 - 82; PMID: 9651182
  • Schuger L, O’Shea KS, Nelson BB, Varani J. Organotypic arrangement of mouse embryonic lung cells on a basement membrane extract: involvement of laminin. Development 1990; 110:1091 - 9; PMID: 2100256
  • Schuger L, Skubitz APN, Gilbride K, Mandel R, He L. Laminin and heparan sulfate proteoglycan mediate epithelial cell polarization in organotypic cultures of embryonic lung cells: evidence implicating involvement of the inner globular region of laminin β 1 chain and the heparan sulfate groups of heparan sulfate proteoglycan. Dev Biol 1996; 179:264 - 73; http://dx.doi.org/10.1006/dbio.1996.0256; PMID: 8873769
  • Schuger L, O’Shea S, Rheinheimer J, Varani J. Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 1990; 137:26 - 32; http://dx.doi.org/10.1016/0012-1606(90)90004-3; PMID: 2403947
  • Nguyen NM, Miner JH, Pierce RA, Senior RM. Laminin α 5 is required for lobar septation and visceral pleural basement membrane formation in the developing mouse lung. Dev Biol 2002; 246:231 - 44; http://dx.doi.org/10.1006/dbio.2002.0658; PMID: 12051813
  • Izvolsky KI, Shoykhet D, Yang Y, Yu Q, Nugent MA, Cardoso WV. Heparan sulfate-FGF10 interactions during lung morphogenesis. Dev Biol 2003; 258:185 - 200; http://dx.doi.org/10.1016/S0012-1606(03)00114-3; PMID: 12781692
  • Dalvin S, Anselmo MA, Prodhan P, Komatsuzaki K, Schnitzer JJ, Kinane TB. Expression of Netrin-1 and its two receptors DCC and UNC5H2 in the developing mouse lung. Gene Expr Patterns 2003; 3:279 - 83; http://dx.doi.org/10.1016/S1567-133X(03)00047-4; PMID: 12799072
  • Liu Y, Stein E, Oliver T, Li Y, Brunken WJ, Koch M, et al. Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr Biol 2004; 14:897 - 905; http://dx.doi.org/10.1016/j.cub.2004.05.020; PMID: 15186747
  • Moore KA, Huang S, Kong Y, Sunday ME, Ingber DE. Control of embryonic lung branching morphogenesis by the Rho activator, cytotoxic necrotizing factor 1. J Surg Res 2002; 104:95 - 100; http://dx.doi.org/10.1006/jsre.2002.6418; PMID: 12020126
  • Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, et al. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 2005; 232:268 - 81; http://dx.doi.org/10.1002/dvdy.20237; PMID: 15614768
  • Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, et al. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet 2010; 19:2251 - 67; http://dx.doi.org/10.1093/hmg/ddq104; PMID: 20223754
  • Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 2004; 271:98 - 108; http://dx.doi.org/10.1016/j.ydbio.2004.03.025; PMID: 15196953
  • Costantini F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 2006; 74:402 - 21; http://dx.doi.org/10.1111/j.1432-0436.2006.00106.x; PMID: 16916378
  • Nigam SK, Shah MM. How does the ureteric bud branch?. J Am Soc Nephrol 2009; 20:1465 - 9; http://dx.doi.org/10.1681/ASN.2008020132; PMID: 19056872
  • Miner JH, Li C. Defective glomerulogenesis in the absence of laminin α5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 2000; 217:278 - 89; http://dx.doi.org/10.1006/dbio.1999.9546; PMID: 10625553
  • Zent R, Bush KT, Pohl ML, Quaranta V, Koshikawa N, Wang Z, et al. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Dev Biol 2001; 238:289 - 302; http://dx.doi.org/10.1006/dbio.2001.0391; PMID: 11784011
  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 1999; 144:151 - 60; http://dx.doi.org/10.1083/jcb.144.1.151; PMID: 9885251
  • Yang D-H, McKee KK, Chen Z-L, Mernaugh G, Strickland S, Zent R, et al. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development 2011; 138:4535 - 44; http://dx.doi.org/10.1242/dev.071266; PMID: 21903675
  • Ekblom P, Ekblom M, Fecker L, Klein G, Zhang HY, Kadoya Y, et al. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 1994; 120:2003 - 14; PMID: 7925005
  • Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, et al. Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 2002; 129:2711 - 22; PMID: 12015298
  • Bullock SL, Fletcher JM, Beddington RSP, Wilson VA. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 1998; 12:1894 - 906; http://dx.doi.org/10.1101/gad.12.12.1894; PMID: 9637690
  • Shah MM, Sakurai H, Sweeney DE, Gallegos TF, Bush KT, Esko JD, et al. Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Dev Biol 2010; 339:354 - 65; http://dx.doi.org/10.1016/j.ydbio.2009.12.033; PMID: 20059993
  • Steer DL, Shah MM, Bush KT, Stuart RO, Sampogna RV, Meyer TN, et al. Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Dev Biol 2004; 272:310 - 27; http://dx.doi.org/10.1016/j.ydbio.2004.04.029; PMID: 15282150
  • Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, et al. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 2011; 356:19 - 27; http://dx.doi.org/10.1016/j.ydbio.2011.05.004; PMID: 21600196
  • Müller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF. Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 1997; 88:603 - 13; http://dx.doi.org/10.1016/S0092-8674(00)81903-0; PMID: 9054500
  • Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, et al. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney. J Cell Biol 2001; 154:447 - 58; http://dx.doi.org/10.1083/jcb.200103069; PMID: 11470831
  • Linton JM, Martin GR, Reichardt LF. The ECM protein nephronectin promotes kidney development via integrin α8β1-mediated stimulation of Gdnf expression. Development 2007; 134:2501 - 9; http://dx.doi.org/10.1242/dev.005033; PMID: 17537792
  • Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol 2004; 275:44 - 67; http://dx.doi.org/10.1016/j.ydbio.2004.07.022; PMID: 15464572
  • Michael L, Sweeney DE, Davies JA. A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney Int 2005; 68:2010 - 8; http://dx.doi.org/10.1111/j.1523-1755.2005.00655.x; PMID: 16221201
  • Meyer TN, Schwesinger C, Sampogna RV, Vaughn DA, Stuart RO, Steer DL, et al. Rho kinase acts at separate steps in ureteric bud and metanephric mesenchyme morphogenesis during kidney development. Differentiation 2006; 74:638 - 47; http://dx.doi.org/10.1111/j.1432-0436.2006.00102.x; PMID: 17177859
  • Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, et al. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet 2010; 6:e1001176; http://dx.doi.org/10.1371/journal.pgen.1001176; PMID: 21060807
  • Gjorevski N, Nelson CM. Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 2011; 12:581 - 93; http://dx.doi.org/10.1038/nrm3168; PMID: 21829222
  • Keely PJ, Wu JE, Santoro SA. The spatial and temporal expression of the α 2 β 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 1995; 59:1 - 13; http://dx.doi.org/10.1046/j.1432-0436.1995.5910001.x; PMID: 7589890
  • Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 2006; 235:3222 - 9; http://dx.doi.org/10.1002/dvdy.20972; PMID: 17029292
  • Alcaraz J, Mori H, Ghajar CM, Brownfield D, Galgoczy R, Bissell MJ. Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening. Integr Biol (Camb) 2011; 3:1153 - 66; http://dx.doi.org/10.1039/c1ib00073j; PMID: 21993836
  • Sympson CJ, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol 1994; 125:681 - 93; http://dx.doi.org/10.1083/jcb.125.3.681; PMID: 8175886
  • Witty JP, Wright JH, Matrisian LM. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell 1995; 6:1287 - 303; PMID: 8573787
  • Ha H-Y, Moon H-B, Nam M-S, Lee J-W, Ryoo Z-Y, Lee T-H, et al. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 2001; 61:984 - 90; PMID: 11221894
  • Schedin P, Strange R, Mitrenga T, Wolfe P, Kaeck M. Fibronectin fragments induce MMP activity in mouse mammary epithelial cells: evidence for a role in mammary tissue remodeling. J Cell Sci 2000; 113:795 - 806; PMID: 10671369
  • Silberstein GB, Daniel CW. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol 1982; 90:215 - 22; http://dx.doi.org/10.1016/0012-1606(82)90228-7; PMID: 6800862
  • Silberstein GB, Flanders KC, Roberts AB, Daniel CW. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β 1. Dev Biol 1992; 152:354 - 62; http://dx.doi.org/10.1016/0012-1606(92)90142-4; PMID: 1644225
  • Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 2006; 314:298 - 300; http://dx.doi.org/10.1126/science.1131000; PMID: 17038622
  • Pavlovich AL, Boghaert E, Nelson CM. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp Cell Res 2011; 317:1872 - 84; http://dx.doi.org/10.1016/j.yexcr.2011.03.017; PMID: 21459084
  • Naylor MJ, Li N, Cheung J, Lowe ET, Lambert E, Marlow R, et al. Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol 2005; 171:717 - 28; http://dx.doi.org/10.1083/jcb.200503144; PMID: 16301336
  • Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J 2005; 24:1942 - 53; http://dx.doi.org/10.1038/sj.emboj.7600674; PMID: 15889143
  • Taddei I, Deugnier M-A, Faraldo MM, Petit V, Bouvard D, Medina D, et al. Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 2008; 10:716 - 22; http://dx.doi.org/10.1038/ncb1734; PMID: 18469806
  • Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 2008; 14:570 - 81; http://dx.doi.org/10.1016/j.devcel.2008.03.003; PMID: 18410732
  • Crowley MR, Head KL, Kwiatkowski DJ, Asch HL, Asch BB. The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis. Dev Biol 2000; 225:407 - 23; http://dx.doi.org/10.1006/dbio.2000.9844; PMID: 10985859
  • van Miltenburg MHAM, Lalai R, de Bont H, van Waaij E, Beggs H, Danen EHJ, et al. Complete focal adhesion kinase deficiency in the mammary gland causes ductal dilation and aberrant branching morphogenesis through defects in Rho kinase-dependent cell contractility. FASEB J 2009; 23:3482 - 93; http://dx.doi.org/10.1096/fj.08-123398; PMID: 19584305
  • Gjorevski N, Nelson CM. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol (Camb) 2010; 2:424 - 34; http://dx.doi.org/10.1039/c0ib00040j; PMID: 20717570
  • Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation 2006; 74:349 - 64; http://dx.doi.org/10.1111/j.1432-0436.2006.00088.x; PMID: 16916374
  • Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, et al. Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling. Dev Biol 2007; 308:15 - 29; http://dx.doi.org/10.1016/j.ydbio.2007.04.031; PMID: 17601529
  • Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 2007; 134:4177 - 86; http://dx.doi.org/10.1242/dev.011171; PMID: 17959718
  • Hardman P, Spooner BS. Localization of extracellular matrix components in developing mouse salivary glands by confocal microscopy. Anat Rec 1992; 234:452 - 9; http://dx.doi.org/10.1002/ar.1092340315; PMID: 1443671
  • Nakanishi Y, Nogawa H, Hashimoto Y, Kishi J, Hayakawa T. Accumulation of collagen III at the cleft points of developing mouse submandibular epithelium. Development 1988; 104:51 - 9; PMID: 3075544
  • Fukuda Y, Masuda Y, Kishi J, Hashimoto Y, Hayakawa T, Nogawa H, et al. The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development 1988; 103:259 - 67; PMID: 2852095
  • Nakanishi Y, Sugiura F, Kishi J-I, Hayakawa T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol 1986; 113:201 - 6; http://dx.doi.org/10.1016/0012-1606(86)90122-3; PMID: 3002886
  • Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature 2003; 423:876 - 81; http://dx.doi.org/10.1038/nature01712; PMID: 12815434
  • Larsen M, Wei C, Yamada KM. Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci 2006; 119:3376 - 84; http://dx.doi.org/10.1242/jcs.03079; PMID: 16882689
  • Kadoya Y, Yamashina S. Cellular dynamics of epithelial clefting during branching morphogenesis of the mouse submandibular gland. Dev Dyn 2010; 239:1739 - 47; http://dx.doi.org/10.1002/dvdy.22312; PMID: 20503369
  • Daley WP, Gulfo KM, Sequeira SJ, Larsen M. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Dev Biol 2009; 336:169 - 82; http://dx.doi.org/10.1016/j.ydbio.2009.09.037; PMID: 19804774
  • Daley WP, Kohn JM, Larsen M. A focal adhesion protein-based mechanochemical checkpoint regulates cleft progression during branching morphogenesis. Dev Dyn 2011; 240:2069 - 83; http://dx.doi.org/10.1002/dvdy.22714; PMID: 22016182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.