870
Views
23
CrossRef citations to date
0
Altmetric
Organogenesis Forum

Four danger response programs determine glomerular and tubulointerstitial kidney pathology

Clotting, inflammation, epithelial and mesenchymal healing

Pages 29-40 | Published online: 01 Apr 2012

References

  • Puhle M. Die Vitalienbrüder: Klaus Störtebeker und die Seeräuber der Hansezeit. Frankfurt am Main, Campus Verlag. 1992.
  • Nichols SA, Dirks W, Pearse JS, King N. Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci U S A 2006; 103:12451 - 6; http://dx.doi.org/10.1073/pnas.0604065103; PMID: 16891419
  • Schilmiller AL, Howe GA. Systemic signaling in the wound response. Curr Opin Plant Biol 2005; 8:369 - 77; http://dx.doi.org/10.1016/j.pbi.2005.05.008; PMID: 15939667
  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453:314 - 21; http://dx.doi.org/10.1038/nature07039; PMID: 18480812
  • Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341:738 - 46; http://dx.doi.org/10.1056/NEJM199909023411006; PMID: 10471461
  • Clark RA. Cutaneous tissue repair: basic biologic considerations. I. J Am Acad Dermatol 1985; 13:701 - 25; http://dx.doi.org/10.1016/S0190-9622(85)70213-7; PMID: 2416789
  • Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997; 276:75 - 81; http://dx.doi.org/10.1126/science.276.5309.75; PMID: 9082989
  • Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105:Suppl 1 S13 - 33; http://dx.doi.org/10.1160/THS10-11-0720; PMID: 21479340
  • Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454:428 - 35; http://dx.doi.org/10.1038/nature07201; PMID: 18650913
  • Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 2010; 22:39 - 47; http://dx.doi.org/10.1016/j.smim.2009.11.007; PMID: 20022762
  • Gauthier ME, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev 2010; 12:519 - 33; http://dx.doi.org/10.1111/j.1525-142X.2010.00436.x; PMID: 20883219
  • Wiens M, Korzhev M, Perovic-Ottstadt S, Luthringer B, Brandt D, Klein S, et al. Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera). Mol Biol Evol 2007; 24:792 - 804; http://dx.doi.org/10.1093/molbev/msl208; PMID: 17190971
  • Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol 2010; 28:321 - 42; http://dx.doi.org/10.1146/annurev-immunol-030409-101311; PMID: 20307211
  • Anders HJ. Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 2010; 21:1270 - 4; http://dx.doi.org/10.1681/ASN.2010030233; PMID: 20651159
  • Semple JW, Italiano JE Jr., Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11:264 - 74; http://dx.doi.org/10.1038/nri2956; PMID: 21436837
  • Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6:19 - 48; http://dx.doi.org/10.1146/annurev-pathol-011110-130327; PMID: 20887193
  • Ahronowitz I, Harp J, Shinkai K. Etiology and management of pyoderma gangrenosum: a comprehensive review. Am J Clin Dermatol 2012; 13:191 - 211; http://dx.doi.org/10.2165/11595240-000000000-00000; PMID: 22356259
  • Romagnani P. From Proteus to Prometheus: learning from fish to modulate regeneration. J Am Soc Nephrol 2010; 21:726 - 8; http://dx.doi.org/10.1681/ASN.2010020228; PMID: 20378822
  • Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83:835 - 70; PMID: 12843410
  • Sopova K, Tatsidou P, Stellos K. Platelets and Platelet Interaction with Progenitor Cells in Vascular Homeostasis and Inflammation. Curr Vasc Pharmacol 2012; PMID: 22338570
  • Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol 2011; 23:159 - 63; http://dx.doi.org/10.1093/intimm/dxr001; PMID: 21393631
  • Sugawara T, Gallucci RM, Simeonova PP, Luster MI. Regulation and role of interleukin 6 in wounded human epithelial keratinocytes. Cytokine 2001; 15:328 - 36; http://dx.doi.org/10.1006/cyto.2001.0946; PMID: 11594800
  • Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 2009; 206:1465 - 72; http://dx.doi.org/10.1084/jem.20082683; PMID: 19564350
  • Nishida T, Nakamura M, Mishima H, Otori T. Interleukin 6 promotes epithelial migration by a fibronectin-dependent mechanism. J Cell Physiol 1992; 153:1 - 5; http://dx.doi.org/10.1002/jcp.1041530102; PMID: 1522123
  • Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis 2012; In press http://dx.doi.org/10.1002/ibd.22929; PMID: 22359410
  • Jiang GX, Zhong XY, Cui YF, Liu W, Tai S, Wang ZD, et al. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro. Mol Biol Rep 2010; 37:3813 - 8; http://dx.doi.org/10.1007/s11033-010-0036-z; PMID: 20229017
  • Braun RK, Ferrick C, Neubauer P, Sjoding M, Sterner-Kock A, Kock M, et al. IL-17 producing gammadelta T cells are required for a controlled inflammatory response after bleomycin-induced lung injury. Inflammation 2008; 31:167 - 79; http://dx.doi.org/10.1007/s10753-008-9062-6; PMID: 18338242
  • Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276:81 - 7; http://dx.doi.org/10.1126/science.276.5309.81; PMID: 9082990
  • Sipos F, Valcz G, Molńr B. Physiological and pathological role of local and immigrating colonic stem cells. World J Gastroenterol 2012; 18:295 - 301; http://dx.doi.org/10.3748/wjg.v18.i4.295; PMID: 22294835
  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16:535 - 43, 1p, 143; http://dx.doi.org/10.1038/nm.2144; PMID: 20436483
  • Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 2010; 21:212 - 22; http://dx.doi.org/10.1681/ASN.2008121226; PMID: 20019167
  • Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776 - 84; PMID: 14679171
  • Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Göbel N, et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A 2009; 106:17892 - 7; http://dx.doi.org/10.1073/pnas.0906070106; PMID: 19815530
  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010; 176:85 - 97; http://dx.doi.org/10.2353/ajpath.2010.090517; PMID: 20008127
  • Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010; 21:1819 - 34; http://dx.doi.org/10.1681/ASN.2010080793; PMID: 20864689
  • Chapman K, Seldon M, Richards R. Thrombotic microangiopathies, thrombotic thrombocytopenic purpura, and ADAMTS-13. Semin Thromb Hemost 2012; 38:47 - 54; http://dx.doi.org/10.1055/s-0031-1300951; PMID: 22314603
  • Amengual O, Atsumi T, Koike T. Pathophysiology of thrombosis and potential targeted therapies in antiphospholipid syndrome. Curr Vasc Pharmacol 2011; 9:606 - 18; http://dx.doi.org/10.2174/157016111796642715; PMID: 21692741
  • Bonsib SM. Glomerular basement membrane discontinuities. Scanning electron microscopic study of acellular glomeruli. Am J Pathol 1985; 119:357 - 60; PMID: 4014431
  • Sörensen I, Susnik N, Inhester T, Degen JL, Melk A, Haller H, et al. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int 2011; 80:1035 - 44; http://dx.doi.org/10.1038/ki.2011.214; PMID: 21734641
  • Drew AF, Tucker HL, Liu H, Witte DP, Degen JL, Tipping PG. Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am J Physiol Renal Physiol 2001; 281:F1157 - 63; PMID: 11704568
  • Ryu M, Migliorini M, Miosge N, Gross O, Shankland S, Brinkoetter PT, et al. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J Pathol 2012; 226:120 - 31; PMID: 21953121
  • Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C, Duffield J. The renal mononuclear phagocytic system. J Am Soc Nephrol 2012; 23:194 - 203; http://dx.doi.org/10.1681/ASN.2011070680; PMID: 22135312
  • Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol 2010; 22:717 - 28; http://dx.doi.org/10.1093/intimm/dxq058; PMID: 20584763
  • Anders HJ, Banas B, Schlöndorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 2004; 15:854 - 67; http://dx.doi.org/10.1097/01.ASN.0000121781.89599.16; PMID: 15034087
  • Patole PS, Pawar RD, Lech M, Zecher D, Schmidt H, Segerer S, et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant 2006; 21:3062 - 73; http://dx.doi.org/10.1093/ndt/gfl336; PMID: 16954173
  • Anders HJ. Innate pathogen recognition in the kidney: toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney Int 2007; 72:1051 - 6; http://dx.doi.org/10.1038/sj.ki.5002436; PMID: 17653134
  • Anders HJ, Muruve DA. The inflammasomes in kidney disease. J Am Soc Nephrol 2011; 22:1007 - 18; http://dx.doi.org/10.1681/ASN.2010080798; PMID: 21566058
  • Pawar RD, Castrezana-Lopez L, Allam R, Kulkarni OP, Segerer S, Radomska E, et al. Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Toll-like receptor 2 at the glomerular filtration barrier. Immunology 2009; 128:Suppl e206 - 21; http://dx.doi.org/10.1111/j.1365-2567.2008.02948.x; PMID: 19175801
  • Patole PS, Gröne HJ, Segerer S, Ciubar R, Belemezova E, Henger A, et al. Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 2005; 16:1326 - 38; http://dx.doi.org/10.1681/ASN.2004100820; PMID: 15772251
  • Pawar RD, Patole PS, Zecher D, Segerer S, Kretzler M, Schlöndorff D, et al. Toll-like receptor-7 modulates immune complex glomerulonephritis. J Am Soc Nephrol 2006; 17:141 - 9; http://dx.doi.org/10.1681/ASN.2005070714; PMID: 16280469
  • Anders HJ, Banas B, Linde Y, Weller L, Cohen CD, Kretzler M, et al. Bacterial CpG-DNA aggravates immune complex glomerulonephritis: role of TLR9-mediated expression of chemokines and chemokine receptors. J Am Soc Nephrol 2003; 14:317 - 26; http://dx.doi.org/10.1097/01.ASN.0000042169.23931.73; PMID: 12538732
  • Anders HJ, Vielhauer V, Eis V, Linde Y, Kretzler M, Perez de Lema G, et al. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J 2004; 18:534 - 6; PMID: 14734643
  • Allam R, Pawar RD, Kulkarni OP, Hornung V, Hartmann G, Segerer S, et al. Viral 5′-triphosphate RNA and non-CpG DNA aggravate autoimmunity and lupus nephritis via distinct TLR-independent immune responses. Eur J Immunol 2008; 38:3487 - 98; http://dx.doi.org/10.1002/eji.200838604; PMID: 19009528
  • Brown HJ, Lock HR, Sacks SH, Robson MG. TLR2 stimulation of intrinsic renal cells in the induction of immune-mediated glomerulonephritis. J Immunol 2006; 177:1925 - 31; PMID: 16849506
  • Brown HJ, Lock HR, Wolfs TG, Buurman WA, Sacks SH, Robson MG. Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2. J Am Soc Nephrol 2007; 18:1732 - 9; http://dx.doi.org/10.1681/ASN.2006060634; PMID: 17460147
  • Brown HJ, Sacks SH, Robson MG. Toll-like receptor 2 agonists exacerbate accelerated nephrotoxic nephritis. J Am Soc Nephrol 2006; 17:1931 - 9; http://dx.doi.org/10.1681/ASN.2005111167; PMID: 16738018
  • Wörnle M, Schmid H, Banas B, Merkle M, Henger A, Roeder M, et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 2006; 168:370 - 85; http://dx.doi.org/10.2353/ajpath.2006.050491; PMID: 16436653
  • Lichtnekert J, Vielhauer V, Zecher D, Kulkarni OP, Clauss S, Segerer S, et al. Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. Am J Physiol Renal Physiol 2009; 296:F867 - 74; http://dx.doi.org/10.1152/ajprenal.90213.2008; PMID: 19158348
  • Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010; 21:1732 - 44; http://dx.doi.org/10.1681/ASN.2010020143; PMID: 20688930
  • Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, et al. Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One 2011; 6:e26778; http://dx.doi.org/10.1371/journal.pone.0026778; PMID: 22046355
  • Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 2009; 106:20388 - 93; http://dx.doi.org/10.1073/pnas.0908698106; PMID: 19918053
  • Ryu M, Kulkarni OP, Radomska E, Miosge N, Gross O, Anders HJ. Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype and tumor necrosis factor-α-mediated podocyte loss. Kidney Int 2011; 79:189 - 98; http://dx.doi.org/10.1038/ki.2010.373; PMID: 20962742
  • Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 2007; 18:1721 - 31; http://dx.doi.org/10.1681/ASN.2006101162; PMID: 17460144
  • Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR, et al. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 2010; 21:1878 - 90; http://dx.doi.org/10.1681/ASN.2009101048; PMID: 20847143
  • Shigeoka AA, Holscher TD, King AJ, Hall FW, Kiosses WB, Tobias PS, et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 2007; 178:6252 - 8; PMID: 17475853
  • Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 2005; 115:2894 - 903; http://dx.doi.org/10.1172/JCI22832; PMID: 16167081
  • Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117:2847 - 59; http://dx.doi.org/10.1172/JCI31008; PMID: 17853945
  • Anders HJ, Schlöndorff D. Toll-like receptors: emerging concepts in kidney disease. Curr Opin Nephrol Hypertens 2007; 16:177 - 83; http://dx.doi.org/10.1097/MNH.0b013e32803fb767; PMID: 17420659
  • Lech M, Garlanda C, Mantovani A, Kirschning CJ, Schlöndorff D, Anders HJ. Different roles of TiR8/Sigirr on toll-like receptor signaling in intrarenal antigen-presenting cells and tubular epithelial cells. Kidney Int 2007; 72:182 - 92; http://dx.doi.org/10.1038/sj.ki.5002293; PMID: 17495864
  • Lassen S, Lech M, Römmele C, Mittruecker HW, Mak TW, Anders HJ. Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J Immunol 2010; 185:1976 - 83; http://dx.doi.org/10.4049/jimmunol.0904207; PMID: 20601597
  • Lech M, Avila-Ferrufino A, Allam R, Segerer S, Khandoga A, Krombach F, et al. Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J Immunol 2009; 183:4109 - 18; http://dx.doi.org/10.4049/jimmunol.0900118; PMID: 19692646
  • Gong J, Wei T, Stark RW, Jamitzky F, Heckl WM, Anders HJ, et al. Inhibition of Toll-like receptors TLR4 and 7 signaling pathways by SIGIRR: a computational approach. J Struct Biol 2010; 169:323 - 30; http://dx.doi.org/10.1016/j.jsb.2009.12.007; PMID: 20025973
  • Pawar RD, Patole PS, Wörnle M, Anders HJ. Microbial nucleic acids pay a Toll in kidney disease. Am J Physiol Renal Physiol 2006; 291:F509 - 16; http://dx.doi.org/10.1152/ajprenal.00453.2005; PMID: 16597607
  • Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 2007; 25:419 - 41; http://dx.doi.org/10.1146/annurev.immunol.22.012703.104514; PMID: 17378763
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416:603 - 7; http://dx.doi.org/10.1038/416603a; PMID: 11948342
  • Migliorini A, Anders HJ. A novel pathogenetic concept-antiviral immunity in lupus nephritis. Nat Rev Nephrol 2012; 8:183 - 9; http://dx.doi.org/10.1038/nrneph.2011.197; PMID: 22249778
  • Anders HJ. Pseudoviral immunity—a novel concept for lupus. Trends Mol Med 2009; 15:553 - 61; http://dx.doi.org/10.1016/j.molmed.2009.10.004; PMID: 19896418
  • Anders HJ, Lichtnekert J, Allam R. Interferon-alpha and -beta in kidney inflammation. Kidney Int 2010; 77:848 - 54; http://dx.doi.org/10.1038/ki.2010.71; PMID: 20237459
  • Flür K, Allam R, Zecher D, Kulkarni OP, Lichtnekert J, Schwarz M, et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: Implications for viral infection-associated glomerulonephritis. Am J Pathol 2009; 175:2014 - 22; http://dx.doi.org/10.2353/ajpath.2009.080585; PMID: 19850889
  • Hägele H, Allam R, Pawar RD, Anders HJ. Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrol Dial Transplant 2009; 24:3312 - 8; http://dx.doi.org/10.1093/ndt/gfp339; PMID: 19608629
  • Hägele H, Allam R, Pawar RD, Reichel CA, Krombach F, Anders HJ. Double-stranded DNA activates glomerular endothelial cells and enhances albumin permeability via a toll-like receptor-independent cytosolic DNA recognition pathway. Am J Pathol 2009; 175:1896 - 904; http://dx.doi.org/10.2353/ajpath.2009.090182; PMID: 19834059
  • Allam R, Lichtnekert J, Moll A, Taubitz A, Vielhauer V, Anders HJ. Viral RNA and DNA sense common antiviral responses including type I interferons in mesangial cells. J Am Soc Nephrol 2009; 20:1986 - 96; http://dx.doi.org/10.1681/ASN.2008101067; PMID: 19713315
  • Fairhurst AM, Mathian A, Connolly JE, Wang A, Gray HF, George TA, et al. Systemic IFN-alpha drives kidney nephritis in B6.Sle123 mice. Eur J Immunol 2008; 38:1948 - 60; http://dx.doi.org/10.1002/eji.200837925; PMID: 18506882
  • Fairhurst AM, Xie C, Fu Y, Wang A, Boudreaux C, Zhou XJ, et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J Immunol 2009; 183:6831 - 8; http://dx.doi.org/10.4049/jimmunol.0900742; PMID: 19864599
  • Anders HJ, Vielhauer V, Schlöndorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 2003; 63:401 - 15; http://dx.doi.org/10.1046/j.1523-1755.2003.00750.x; PMID: 12631106
  • Vielhauer V, Kulkarni O, Reichel CA, Anders HJ. Targeting the recruitment of monocytes and macrophages in renal disease. Semin Nephrol 2010; 30:318 - 33; http://dx.doi.org/10.1016/j.semnephrol.2010.03.006; PMID: 20620675
  • Heller F, Lindenmeyer MT, Cohen CD, Brandt U, Draganovici D, Fischereder M, et al. The contribution of B cells to renal interstitial inflammation. Am J Pathol 2007; 170:457 - 68; http://dx.doi.org/10.2353/ajpath.2007.060554; PMID: 17255314
  • Steinmetz OM, Stahl RA, Panzer U. Chemokines and B cells in renal inflammation and allograft rejection. Front Biosci (Schol Ed) 2009; 1:13 - 22; PMID: 19482678
  • Panzer U, Kurts C. T cell cross-talk with kidney dendritic cells in glomerulonephritis. J Mol Med (Berl) 2010; 88:19 - 26; http://dx.doi.org/10.1007/s00109-009-0541-5; PMID: 19798477
  • Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 2011; 80:915 - 25; http://dx.doi.org/10.1038/ki.2011.217; PMID: 21814171
  • Anders HJ, Frink M, Linde Y, Banas B, Wörnle M, Cohen CD, et al. CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J Immunol 2003; 170:5658 - 66; PMID: 12759447
  • Pawar RD, Patole PS, Ellwart A, Lech M, Segerer S, Schlondorff D, et al. Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J Am Soc Nephrol 2006; 17:3365 - 73; http://dx.doi.org/10.1681/ASN.2006030263; PMID: 17082246
  • Anders HJ, Zecher D, Pawar RD, Patole PS. Molecular mechanisms of autoimmunity triggered by microbial infection. Arthritis Res Ther 2005; 7:215 - 24; http://dx.doi.org/10.1186/ar1818; PMID: 16207351
  • Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, et al. Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol 2011; 34:367 - 72; http://dx.doi.org/10.1159/000330685; PMID: 21876349
  • Kulkarni O, Pawar RD, Purschke W, Eulberg D, Selve N, Buchner K, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol 2007; 18:2350 - 8; http://dx.doi.org/10.1681/ASN.2006121348; PMID: 17625118
  • Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, et al. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 2008; 172:628 - 37; http://dx.doi.org/10.2353/ajpath.2008.070601; PMID: 18258851
  • Kulkarni O, Eulberg D, Selve N, Zöllner S, Allam R, Pawar RD, et al. Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J Pharmacol Exp Ther 2009; 328:371 - 7; http://dx.doi.org/10.1124/jpet.108.142711; PMID: 18997060
  • Sayyed SG, Ryu M, Kulkarni OP, Schmid H, Lichtnekert J, Grüner S, et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int 2011; 80:68 - 78; http://dx.doi.org/10.1038/ki.2011.102; PMID: 21508925
  • Clauss S, Gross O, Kulkarni O, Avila-Ferrufino A, Radomska E, Segerer S, et al. Ccl2/Mcp-1 blockade reduces glomerular and interstitial macrophages but does not ameliorate renal pathology in collagen4A3-deficient mice with autosomal recessive Alport nephropathy. J Pathol 2009; 218:40 - 7; http://dx.doi.org/10.1002/path.2505; PMID: 19156777
  • Ribeiro A, Wörnle M, Motamedi N, Anders HJ, Gröne EF, Nitschko H, et al. Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy. Kidney Int 2012; 81:100 - 11; http://dx.doi.org/10.1038/ki.2011.311; PMID: 21918500
  • Anders HJ, Patole PS. Toll-like receptors recognize uropathogenic Escherichia coli and trigger inflammation in the urinary tract. Nephrol Dial Transplant 2005; 20:1529 - 32; http://dx.doi.org/10.1093/ndt/gfh922; PMID: 15941847
  • Patole PS, Schubert S, Hildinger K, Khandoga S, Khandoga A, Segerer S, et al. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int 2005; 68:2582 - 7; http://dx.doi.org/10.1111/j.1523-1755.2005.00729.x; PMID: 16316333
  • Kulkarni OP, Ryu M, Kantner C, Sárdy M, Naylor D, Lambert D, et al. Recombinant chaperonin 10 suppresses cutaneous lupus and lupus nephritis in MRL-(Fas)lpr mice. Nephrol Dial Transplant 2012; 27:1358 - 67; http://dx.doi.org/10.1093/ndt/gfr544; PMID: 21987536
  • Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 2003; 14:Suppl 1 S55 - 61; http://dx.doi.org/10.1097/01.ASN.0000067652.51441.21; PMID: 12761240
  • Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med 2007; 357:797 - 805; http://dx.doi.org/10.1056/NEJMra064398; PMID: 17715412
  • Sugimoto H, Lebleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012; 18:396 - 404; http://dx.doi.org/10.1038/nm.2629; PMID: 22306733
  • Mulay SR, Thomasova D, Ryu M, Anders HJ. MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney Int 2012; 81:1199 - 211; http://dx.doi.org/10.1038/ki.2011.482; PMID: 22297670
  • Weidenbusch M, Anders HJ. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair, and fibrosis. J Innate Immun 2012; In press
  • Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115:56 - 65; PMID: 15630444
  • Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011; 22:317 - 26; http://dx.doi.org/10.1681/ASN.2009060615; PMID: 21289217
  • Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl 2010; 78:S22 - 6; http://dx.doi.org/10.1038/ki.2010.418; PMID: 21116313
  • Lasagni L, Romagnani P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J Am Soc Nephrol 2010; 21:1612 - 9; http://dx.doi.org/10.1681/ASN.2010010048; PMID: 20829409
  • Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 2011; 108:9226 - 31; http://dx.doi.org/10.1073/pnas.1100629108; PMID: 21576461
  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008; 2:284 - 91; http://dx.doi.org/10.1016/j.stem.2008.01.014; PMID: 18371453
  • Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115:1743 - 55; http://dx.doi.org/10.1172/JCI22593; PMID: 16007251
  • Romagnani P. Family portrait: renal progenitor of Bowman’s capsule and its tubular brothers. Am J Pathol 2011; 178:490 - 3; http://dx.doi.org/10.1016/j.ajpath.2010.11.044; PMID: 21281781
  • Tögel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol 2010; 6:179 - 83; http://dx.doi.org/10.1038/nrneph.2009.229; PMID: 20186233
  • Kriz W, Lemley KV. The role of the podocyte in glomerulosclerosis. Curr Opin Nephrol Hypertens 1999; 8:489 - 97; http://dx.doi.org/10.1097/00041552-199907000-00014; PMID: 10491745
  • Teixeira VdeP, Blattner SM, Li M, Anders HJ, Cohen CD, Edenhofer I, et al. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int 2005; 67:514 - 23; http://dx.doi.org/10.1111/j.1523-1755.2005.67108.x; PMID: 15673299
  • Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 2005; 16:2941 - 52; http://dx.doi.org/10.1681/ASN.2005010055; PMID: 16107576
  • Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A 2006; 103:7321 - 6; http://dx.doi.org/10.1073/pnas.0601436103; PMID: 16648256
  • LeBleu V, Sugimoto H, Mundel TM, Gerami-Naini B, Finan E, Miller CA, et al. Stem cell therapies benefit Alport syndrome. J Am Soc Nephrol 2009; 20:2359 - 70; http://dx.doi.org/10.1681/ASN.2009010123; PMID: 19833902
  • Gross O, Borza DB, Anders HJ, Licht C, Weber M, Segerer S, et al. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol Dial Transplant 2009; 24:731 - 4; http://dx.doi.org/10.1093/ndt/gfn722; PMID: 19110486
  • Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009; 20:322 - 32; http://dx.doi.org/10.1681/ASN.2008070709; PMID: 19092120
  • Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009; 20:333 - 43; http://dx.doi.org/10.1681/ASN.2008070795; PMID: 19092119
  • Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 2007; 18:3128 - 38; http://dx.doi.org/10.1681/ASN.2007020210; PMID: 17978305
  • Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010; 28:1674 - 85; http://dx.doi.org/10.1002/stem.492; PMID: 20680961
  • Bollée G, Flamant M, Schordan S, Fligny C, Rumpel E, Milon M, et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011; 17:1242 - 50; http://dx.doi.org/10.1038/nm.2491; PMID: 21946538
  • Sayyed SG, Hägele H, Kulkarni OP, Endlich K, Segerer S, Eulberg D, et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 2009; 52:2445 - 54; http://dx.doi.org/10.1007/s00125-009-1493-6; PMID: 19707743
  • Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C, et al. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 2011; 179:116 - 24; http://dx.doi.org/10.1016/j.ajpath.2011.03.004; PMID: 21703397
  • Macconi D, Sangalli F, Bonomelli M, Conti S, Condorelli L, Gagliardini E, et al. Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am J Pathol 2009; 174:797 - 807; http://dx.doi.org/10.2353/ajpath.2009.080227; PMID: 19164508
  • Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006; 116:288 - 96; http://dx.doi.org/10.1172/JCI27699; PMID: 16453013
  • Gaikwad AB, Sayyed SG, Lichtnekert J, Tikoo K, Anders HJ. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am J Pathol 2010; 176:1079 - 83; http://dx.doi.org/10.2353/ajpath.2010.090528; PMID: 20075197
  • Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, et al. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant 2010; 25:1811 - 7; http://dx.doi.org/10.1093/ndt/gfp730; PMID: 20067909
  • Smeets B, Angelotti ML, Rizzo P, Dijkman H, Lazzeri E, Mooren F, et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009; 20:2593 - 603; http://dx.doi.org/10.1681/ASN.2009020132; PMID: 19875807
  • Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JF, Floege J, et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 2009; 20:2604 - 15; http://dx.doi.org/10.1681/ASN.2009010122; PMID: 19917779
  • Atkins RC, Nikolic-Paterson DJ, Song Q, Lan HY. Modulators of crescentic glomerulonephritis. J Am Soc Nephrol 1996; 7:2271 - 8; PMID: 8959617
  • Tipping PG, Kitching PR, Holdsworth SR. The formation of the glomerular crescent. In: Immunologic Renal Diseases. 2. Neilson EG, Couser WG, eds. Philadelphia: Lippincott Williams & Wilkins Publishers, 2001.
  • Lindgren D, Boström AK, Nilsson K, Hansson J, Sjölund J, Möller C, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011; 178:828 - 37; http://dx.doi.org/10.1016/j.ajpath.2010.10.026; PMID: 21281815
  • Forbes MS, Thornhill BA, Chevalier RL. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 2011; 301:F110 - 7; http://dx.doi.org/10.1152/ajprenal.00022.2011; PMID: 21429968
  • Chevalier RL, Forbes MS. Generation and evolution of atubular glomeruli in the progression of renal disorders. J Am Soc Nephrol 2008; 19:197 - 206; http://dx.doi.org/10.1681/ASN.2007080862; PMID: 18199796
  • Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A, et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 2006; 70:121 - 9; http://dx.doi.org/10.1038/sj.ki.5001521; PMID: 16723981
  • Higgins DF, Lappin DW, Kieran NE, Anders HJ, Watson RW, Strutz F, et al. DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): modulation during epithelial-mesenchymal transition. Kidney Int 2003; 64:2079 - 91; http://dx.doi.org/10.1046/j.1523-1755.2003.00306.x; PMID: 14633130
  • Li Y, Liu Z, Guo X, Shu J, Chen Z, Li L. Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Arch Toxicol 2006; 80:524 - 32; http://dx.doi.org/10.1007/s00204-006-0090-4; PMID: 16609888
  • Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int 2008; 74:158 - 69; http://dx.doi.org/10.1038/ki.2008.129; PMID: 18418355
  • Smeets B, Kuppe C, Sicking EM, Fuss A, Jirak P, van Kuppevelt TH, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22:1262 - 74; http://dx.doi.org/10.1681/ASN.2010090970; PMID: 21719782
  • Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8:293 - 300; http://dx.doi.org/10.1038/nrneph.2012.19; PMID: 22349487
  • Bariety J, Hill GS, Mandet C, Irinopoulou T, Jacquot C, Meyrier A, et al. Glomerular epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis. Nephrol Dial Transplant 2003; 18:1777 - 84; http://dx.doi.org/10.1093/ndt/gfg231; PMID: 12937224
  • Duffield JS. Epithelial to mesenchymal transition in injury of solid organs: fact or artifact?. Gastroenterology 2010; 139:1081 - 3, 1083, e1-5; http://dx.doi.org/10.1053/j.gastro.2010.08.017; PMID: 20800655
  • Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 2010; 21:1247 - 53; http://dx.doi.org/10.1681/ASN.2010060616; PMID: 20651165
  • Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?. J Clin Invest 2011; 121:468 - 74; http://dx.doi.org/10.1172/JCI44595; PMID: 21370523
  • Ninichuk V, Anders HJ. Bone marrow-derived progenitor cells and renal fibrosis. Front Biosci 2008; 13:5163 - 73; http://dx.doi.org/10.2741/3072; PMID: 18508578
  • Vielhauer V, Anders HJ, Mack M, Cihak J, Strutz F, Stangassinger M, et al. Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J Am Soc Nephrol 2001; 12:1173 - 87; PMID: 11373340
  • Anders HJ, Vielhauer V, Kretzler M, Cohen CD, Segerer S, Luckow B, et al. Chemokine and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis. J Am Soc Nephrol 2001; 12:919 - 31; PMID: 11316850
  • Mayer V, Hudkins KL, Heller F, Schmid H, Kretzler M, Brandt U, et al. Expression of the chemokine receptor CCR1 in human renal allografts. Nephrol Dial Transplant 2007; 22:1720 - 9; http://dx.doi.org/10.1093/ndt/gfm007; PMID: 17298994
  • Vielhauer V, Anders HJ. Chemokines and chemokine receptors as therapeutic targets in chronic kidney disease. Front Biosci (Schol Ed) 2009; 1:1 - 12; PMID: 19482677
  • Jedlicka J, Soleiman A, Draganovici D, Mandelbaum J, Ziegler U, Regele H, et al. Interstitial inflammation in Alport syndrome. Hum Pathol 2010; 41:582 - 93; http://dx.doi.org/10.1016/j.humpath.2009.08.024; PMID: 20004949
  • Anders HJ, Ninichuk V, Schlöndorff D. Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int 2006; 69:29 - 32; http://dx.doi.org/10.1038/sj.ki.5000053; PMID: 16374420
  • Eis V, Vielhauer V, Anders HJ. Targeting the chemokine network in renal inflammation. Arch Immunol Ther Exp (Warsz) 2004; 52:164 - 72; PMID: 15247883
  • Eis V, Luckow B, Vielhauer V, Siveke JT, Linde Y, Segerer S, et al. Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol 2004; 15:337 - 47; http://dx.doi.org/10.1097/01.ASN.0000111246.87175.32; PMID: 14747380
  • Anders HJ, Vielhauer V, Frink M, Linde Y, Cohen CD, Blattner SM, et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 2002; 109:251 - 9; PMID: 11805137
  • Anders HJ, Belemezova E, Eis V, Segerer S, Vielhauer V, Perez de Lema G, et al. Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J Am Soc Nephrol 2004; 15:1504 - 13; http://dx.doi.org/10.1097/01.ASN.0000130082.67775.60; PMID: 15153561
  • Vielhauer V, Berning E, Eis V, Kretzler M, Segerer S, Strutz F, et al. CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int 2004; 66:2264 - 78; http://dx.doi.org/10.1111/j.1523-1755.2004.66038.x; PMID: 15569315
  • Ninichuk V, Gross O, Reichel C, Khandoga A, Pawar RD, Ciubar R, et al. Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J Am Soc Nephrol 2005; 16:977 - 85; http://dx.doi.org/10.1681/ASN.2004100871; PMID: 15716328
  • Ninichuk V, Khandoga AG, Segerer S, Loetscher P, Schlapbach A, Revesz L, et al. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol 2007; 170:1267 - 76; http://dx.doi.org/10.2353/ajpath.2007.060937; PMID: 17392166
  • Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA, et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 2006; 169:32 - 46; http://dx.doi.org/10.2353/ajpath.2006.050896; PMID: 16816359