1,455
Views
30
CrossRef citations to date
0
Altmetric
Special Focus Review

Mechanisms of respiratory innervation during embryonic development

&
Pages 194-198 | Received 19 Mar 2013, Accepted 26 Apr 2013, Published online: 14 May 2013

References

  • Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006; 133:1611 - 24; http://dx.doi.org/10.1242/dev.02310; PMID: 16613830
  • Ten Have-Opbroek AA. The development of the lung in mammals: an analysis of concepts and findings. Am J Anat 1981; 162:201 - 19; http://dx.doi.org/10.1002/aja.1001620303; PMID: 7032272
  • Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald JA, ed. Lung Growth and Development. New York: Marcel Dekker, 1997:1-35.
  • Dey R, Hung KS. Development of innervation in the lung. In: McDonald JA, ed. Lung Growth and Development. New York: Marcel Dekker, 1997:244-265.
  • Hirsch EF, Kaiser GC. The Innervation of the lung. Springfield, IL: Thomas, 1969.
  • Belvisi MG. Overview of the innervation of the lung. Curr Opin Pharmacol 2002; 2:211 - 5; http://dx.doi.org/10.1016/S1471-4892(02)00145-5; PMID: 12020459
  • Bystrzycka EK. Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique. Brain Res 1980; 185:59 - 66; http://dx.doi.org/10.1016/0006-8993(80)90670-8; PMID: 7353180
  • Connelly CA, Ellenberger HH, Feldman JL. Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat?. Neurosci Lett 1989; 105:34 - 40; http://dx.doi.org/10.1016/0304-3940(89)90007-4; PMID: 2485883
  • Holtman JR Jr., Marion LJ, Speck DF. Origin of serotonin-containing projections to the ventral respiratory group in the rat. Neuroscience 1990; 37:541 - 52; http://dx.doi.org/10.1016/0306-4522(90)90422-Z; PMID: 2133358
  • Núñez-Abades PA, Portillo F, Pásaro R. Characterisation of afferent projections to the nucleus ambiguus of the rat by means of fluorescent double labelling. J Anat 1990; 172:1 - 15; PMID: 2272895
  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 1991; 254:726 - 9; http://dx.doi.org/10.1126/science.1683005; PMID: 1683005
  • Haxhiu MA, Jansen ASP, Cherniack NS, Loewy AD. CNS innervation of airway-related parasympathetic preganglionic neurons: a transneuronal labeling study using pseudorabies virus. Brain Res 1993; 618:115 - 34; http://dx.doi.org/10.1016/0006-8993(93)90435-P; PMID: 8402166
  • Carr MJ, Undem BJ. Bronchopulmonary afferent nerves. Respirology 2003; 8:291 - 301; http://dx.doi.org/10.1046/j.1440-1843.2003.00473.x; PMID: 14528878
  • Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol 2006; 101:971 - 85; http://dx.doi.org/10.1152/japplphysiol.00313.2006; PMID: 16728519
  • Myers AC. Electrophysiology of airway nerves. Curr Protoc Pharmacol 2007; Chapter 11:10; PMID: 21948159
  • Adriaensen D, Timmermans JP, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW. Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res 1998; 293:395 - 405; http://dx.doi.org/10.1007/s004410051131; PMID: 9716729
  • Hung KS. Innervation of rabbit fetal lungs. Am J Anat 1980; 159:73 - 83; http://dx.doi.org/10.1002/aja.1001590107; PMID: 7446443
  • Weichselbaum M, Everett AW, Sparrow MP. Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP 9.5 and SV2. Am J Respir Cell Mol Biol 1996; 15:703 - 10; http://dx.doi.org/10.1165/ajrcmb.15.6.8969263; PMID: 8969263
  • Sparrow MP, Weichselbaum M, McCray PB. Development of the innervation and airway smooth muscle in human fetal lung. Am J Respir Cell Mol Biol 1999; 20:550 - 60; http://dx.doi.org/10.1165/ajrcmb.20.4.3385; PMID: 10100986
  • Tollet J, Everett AW, Sparrow MP. Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development. Dev Dyn 2001; 221:48 - 60; http://dx.doi.org/10.1002/dvdy.1124; PMID: 11357193
  • Burns AJ, Delalande JM. Neural crest cell origin for intrinsic ganglia of the developing chicken lung. Dev Biol 2005; 277:63 - 79; http://dx.doi.org/10.1016/j.ydbio.2004.09.006; PMID: 15572140
  • Burns AJ, Thapar N, Barlow AJ. Development of the neural crest-derived intrinsic innervation of the human lung. Am J Respir Cell Mol Biol 2008; 38:269 - 75; http://dx.doi.org/10.1165/rcmb.2007-0246OC; PMID: 17884989
  • Langsdorf A, Radzikinas K, Kroten A, Jain S, Ai X. Neural crest cell origin and signals for intrinsic neurogenesis in the mammalian respiratory tract. Am J Respir Cell Mol Biol 2011; 44:293 - 301; http://dx.doi.org/10.1165/rcmb.2009-0462OC; PMID: 20139349
  • Freem LJ, Escot S, Tannahill D, Druckenbrod NR, Thapar N, Burns AJ. The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1-Cre;YFP reporter mice. J Anat 2010; 217:651 - 64; http://dx.doi.org/10.1111/j.1469-7580.2010.01295.x; PMID: 20840354
  • Gershon MD, Payette RF, Rothman TP. Development of the enteric nervous system. Fed Proc 1983; 42:1620 - 5; PMID: 6131841
  • Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 1973; 30:31 - 48; PMID: 4729950
  • Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382:76 - 9; http://dx.doi.org/10.1038/382076a0; PMID: 8657308
  • Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382:73 - 6; http://dx.doi.org/10.1038/382073a0; PMID: 8657307
  • Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382:70 - 3; http://dx.doi.org/10.1038/382070a0; PMID: 8657306
  • Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol 2001; 229:503 - 16; http://dx.doi.org/10.1006/dbio.2000.0100; PMID: 11150245
  • Baloh RH, Enomoto H, Johnson EM Jr., Milbrandt J. The GDNF family ligands and receptors - implications for neural development. Curr Opin Neurobiol 2000; 10:103 - 10; http://dx.doi.org/10.1016/S0959-4388(99)00048-3; PMID: 10679429
  • Enomoto H. Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int 2005; 80:42 - 52; http://dx.doi.org/10.1111/j.1447-073x.2005.00099.x; PMID: 15794130
  • Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367:380 - 3; http://dx.doi.org/10.1038/367380a0; PMID: 8114940
  • Freem LJ, Delalande JM, Campbell AM, Thapar N, Burns AJ. Lack of organ specific commitment of vagal neural crest cell derivatives as shown by back-transplantation of GFP chicken tissues. Int J Dev Biol 2012; 56:245 - 54; http://dx.doi.org/10.1387/ijdb.113438lf; PMID: 22562200
  • Weigand LA, Myers AC. Synaptic and membrane properties of parasympathetic ganglionic neurons innervating mouse trachea and bronchi. Am J Physiol Lung Cell Mol Physiol 2010; 298:L593 - 9; http://dx.doi.org/10.1152/ajplung.00386.2009; PMID: 20118300
  • Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans JP, et al. Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 2009; 131:55 - 74; http://dx.doi.org/10.1007/s00418-008-0495-7; PMID: 18762965
  • Sparrow MP, Lamb JP. Ontogeny of airway smooth muscle: structure, innervation, myogenesis and function in the fetal lung. Respir Physiol Neurobiol 2003; 137:361 - 72; http://dx.doi.org/10.1016/S1569-9048(03)00159-9; PMID: 14516738
  • Ginty DD, Segal RA. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr Opin Neurobiol 2002; 12:268 - 74; http://dx.doi.org/10.1016/S0959-4388(02)00326-4; PMID: 12049932
  • Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72:609 - 42; http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629; PMID: 12676795
  • Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci 2011; 31:15407 - 15; http://dx.doi.org/10.1523/JNEUROSCI.2745-11.2011; PMID: 22031887
  • Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, et al. Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 1996; 16:5361 - 71; PMID: 8757249
  • García-Suárez O, Pérez-Pinera P, Laurà R, Germana A, Esteban I, Cabo R, et al. TrkB is necessary for the normal development of the lung. Respir Physiol Neurobiol 2009; 167:281 - 91; http://dx.doi.org/10.1016/j.resp.2009.06.001; PMID: 19523540
  • Cutz E. Neuroendocrine cells of the lung. An overview of morphologic characteristics and development. Exp Lung Res 1982; 3:185 - 208; http://dx.doi.org/10.3109/01902148209069653; PMID: 6188605
  • Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 2001; 24:671 - 81; http://dx.doi.org/10.1165/ajrcmb.24.6.4498; PMID: 11415931
  • Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011; 27:493 - 512; http://dx.doi.org/10.1146/annurev-cellbio-100109-104040; PMID: 21639799
  • Cutz E, Jackson A. Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 1999; 115:201 - 14; http://dx.doi.org/10.1016/S0034-5687(99)00018-3; PMID: 10385034
  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, et al. Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 2009; 23:1153 - 60; http://dx.doi.org/10.1096/fj.08-109579; PMID: 19050048
  • Lembrechts R, Brouns I, Schnorbusch K, Pintelon I, Timmermans JP, Adriaensen D. Neuroepithelial bodies as mechanotransducers in the intrapulmonary airway epithelium: involvement of TRPC5. Am J Respir Cell Mol Biol 2012; 47:315 - 23; http://dx.doi.org/10.1165/rcmb.2012-0068OC; PMID: 22461428
  • Oztay F, Brouns I, Pintelon I, Raab M, Neuhuber W, Timmermans JP, et al. Neurotrophin-4 dependency of intraepithelial vagal sensory nerve terminals that selectively contact pulmonary NEBs in mice. Histol Histopathol 2010; 25:975 - 84; PMID: 20552548
  • Duarte AG, Myers AC. Cough reflex in lung transplant recipients. Lung 2012; 190:23 - 7; http://dx.doi.org/10.1007/s00408-011-9352-x; PMID: 22139551
  • Nassini R, Materazzi S, De Siena G, De Cesaris F, Geppetti P. Transient receptor potential channels as novel drug targets in respiratory diseases. Curr Opin Investig Drugs 2010; 11:535 - 42; PMID: 20419599
  • Verhein KC, Fryer AD, Jacoby DB. Neural control of airway inflammation. Curr Allergy Asthma Rep 2009; 9:484 - 90; http://dx.doi.org/10.1007/s11882-009-0071-9; PMID: 19814922