1,552
Views
21
CrossRef citations to date
0
Altmetric
Views and Commentary

Controlling the mechanical properties of three-dimensional matrices via non-enzymatic collagen glycation

&
Pages 70-75 | Received 17 Mar 2013, Accepted 04 May 2013, Published online: 01 Apr 2013

References

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8:241 - 54; http://dx.doi.org/10.1016/j.ccr.2005.08.010; PMID: 16169468
  • DeLoach SS, Townsend RR. Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 2008; 3:184 - 92; http://dx.doi.org/10.2215/CJN.03340807; PMID: 18178784
  • Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, Montague CR, et al. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 2011; 3:ra122; http://dx.doi.org/10.1126/scitranslmed.3002761; PMID: 22158860
  • Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 2006; 90:3012 - 8; http://dx.doi.org/10.1529/biophysj.105.073114; PMID: 16461391
  • Waters CM, Sporn PH, Liu M, Fredberg JJ. Cellular biomechanics in the lung. Am J Physiol Lung Cell Mol Physiol 2002; 283:L503 - 9; PMID: 12169567
  • Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H, Kamm RD, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 2006; 103:10889 - 94; http://dx.doi.org/10.1073/pnas.0604460103; PMID: 16832052
  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 2005; 60:24 - 34; http://dx.doi.org/10.1002/cm.20041; PMID: 15573414
  • Pelham RJ Jr., Wang Yl. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 1997; 94:13661 - 5; http://dx.doi.org/10.1073/pnas.94.25.13661; PMID: 9391082
  • Califano JP, Reinhart-King CA. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng 2010; 3:68 - 75; http://dx.doi.org/10.1007/s12195-010-0102-6; PMID: 21116436
  • Reinhart-King CA, Dembo M, Hammer DA. Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 2003; 19:1573 - 9; http://dx.doi.org/10.1021/la026142j
  • Dembo M, Wang YL. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 1999; 76:2307 - 16; http://dx.doi.org/10.1016/S0006-3495(99)77386-8; PMID: 10096925
  • Califano JP, Reinhart-King CA. A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly. Cell Mol Bioeng 2008; 1:122 - 32; http://dx.doi.org/10.1007/s12195-008-0022-x
  • Reinhart-King CA, Dembo M, Hammer DA. Cell-cell mechanical communication through compliant substrates. Biophys J 2008; 95:6044 - 51; http://dx.doi.org/10.1529/biophysj.107.127662; PMID: 18775964
  • Krishnan R, Klumpers DD, Park CY, Rajendran K, Trepat X, van Bezu J, et al. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am J Physiol Cell Physiol 2011; 300:C146 - 54; http://dx.doi.org/10.1152/ajpcell.00195.2010; PMID: 20861463
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677 - 89; http://dx.doi.org/10.1016/j.cell.2006.06.044; PMID: 16923388
  • Jannat RA, Robbins GP, Ricart BG, Dembo M, Hammer DA. Neutrophil adhesion and chemotaxis depend on substrate mechanics. J Phys Condens Matter 2010; 22:194117; http://dx.doi.org/10.1088/0953-8984/22/19/194117; PMID: 20473350
  • Eisenberg JL, Safi A, Wei X, Espinosa HD, Budinger GS, Takawira D, et al. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Res Rep Biol 2011; 2011:1 - 12; PMID: 23204878
  • Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010; 31:8596 - 607; http://dx.doi.org/10.1016/j.biomaterials.2010.07.072; PMID: 20727585
  • Critser PJ, Kreger ST, Voytik-Harbin SL, Yoder MC. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc Res 2010; 80:23 - 30; http://dx.doi.org/10.1016/j.mvr.2010.03.001; PMID: 20219180
  • Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 2006; 12:2875 - 88; http://dx.doi.org/10.1089/ten.2006.12.2875; PMID: 17518656
  • Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K, Bittermann A, et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 2011; 100:284 - 93; http://dx.doi.org/10.1016/j.bpj.2010.11.082; PMID: 21244824
  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009; 21:3307 - 29; http://dx.doi.org/10.1002/adma.200802106; PMID: 20882499
  • Roy R, Boskey A, Bonassar LJ. Processing of type I collagen gels using nonenzymatic glycation. J Biomed Mater Res A 2010; 93:843 - 51; PMID: 19658163
  • Seidlits SK, Drinnan CT, Petersen RR, Shear JB, Suggs LJ, Schmidt CE. Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 2011; 7:2401 - 9; http://dx.doi.org/10.1016/j.actbio.2011.03.024; PMID: 21439409
  • Mason BN, Starchenko A, Williams RM, Bonassar LJ, Reinhart-King CA. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 2013; 9:4635 - 44; http://dx.doi.org/10.1016/j.actbio.2012.08.007; PMID: 22902816
  • Marklein RA, Soranno DE, Burdick JA. Magnitude and presentation of mechanical signals influence adult stem cell behavior in 3-dimensional macroporous hydrogels. Soft Matter 2012; 8:8113 - 20; http://dx.doi.org/10.1039/c2sm25501d
  • Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008; 29:2757 - 66; http://dx.doi.org/10.1016/j.biomaterials.2008.03.016; PMID: 18396331
  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009; 324:59 - 63; http://dx.doi.org/10.1126/science.1169494; PMID: 19342581
  • Zhang G, Drinnan CT, Geuss LR, Suggs LJ. Vascular differentiation of bone marrow stem cells is directed by a tunable three-dimensional matrix. Acta Biomater 2010; 6:3395 - 403; http://dx.doi.org/10.1016/j.actbio.2010.03.019; PMID: 20302976
  • Williamson MR, Woollard KJ, Griffiths HR, Coombes AG. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Tissue Eng 2006; 12:45 - 51; http://dx.doi.org/10.1089/ten.2006.12.45; PMID: 16499441
  • Quinn TM, Grodzinsky AJ. Longitudinal modulus and hydraulic permeability of poly(methacrylic acid) gels: effects of charge density and solvent content. Macromolecules 1993; 26:4332 - 8; http://dx.doi.org/10.1021/ma00068a040
  • Hoffmann JC, West JL. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 2010; 6:5056; http://dx.doi.org/10.1039/c0sm00140f
  • Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F, Tong YW, et al. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 2011; 32:9308 - 15; http://dx.doi.org/10.1016/j.biomaterials.2011.08.045; PMID: 21911252
  • Ulrich TA, Jain A, Tanner K, MacKay JL, Kumar S. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 2010; 31:1875 - 84; http://dx.doi.org/10.1016/j.biomaterials.2009.10.047; PMID: 19926126
  • Rao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 2012; 15:253 - 64; http://dx.doi.org/10.1007/s10456-012-9257-1; PMID: 22382584
  • Maillard LC. Action des acides amines sur les sucres: formation des melanoides par voie methodique. Comptes Rendus de l’Academie des Sciences 1912; 154:66 - 8
  • Hodge JE. The Amadori rearrangement. Adv Carbohydr Chem 1955; 10:169 - 205; http://dx.doi.org/10.1016/S0096-5332(08)60392-6; PMID: 13292324
  • Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res 2001; 56:1 - 21; http://dx.doi.org/10.1210/rp.56.1.1; PMID: 11237208
  • Roy R, Boskey AL, Bonassar LJ. Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering. J Orthop Res 2008; 26:1434 - 9; http://dx.doi.org/10.1002/jor.20662; PMID: 18473383
  • Kemeny SF, Figueroa DS, Andrews AM, Barbee KA, Clyne AM. Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress. J Biomech 2011; 44:1927 - 35; http://dx.doi.org/10.1016/j.jbiomech.2011.04.026; PMID: 21555127
  • Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 2002; 105:816 - 22; http://dx.doi.org/10.1161/hc0702.104183; PMID: 11854121
  • Francis-Sedlak ME, Moya ML, Huang J-J, Lucas SA, Chandrasekharan N, Larson JC, et al. Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res 2010; 80:3 - 9; http://dx.doi.org/10.1016/j.mvr.2009.12.005; PMID: 20053366
  • Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 1993; 143:1699 - 712; PMID: 8256857
  • Figueroa D, Kemeny S, Clyne A. Glycated Collagen Impairs Endothelial Cell Response to Cyclic Stretch. Cell Mol Bioeng 2011; 4:220 - 30; http://dx.doi.org/10.1007/s12195-011-0176-9
  • Hirose A, Tanikawa T, Mori H, Okada Y, Tanaka Y. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett 2010; 584:61 - 6; http://dx.doi.org/10.1016/j.febslet.2009.11.082; PMID: 19944695
  • Ding Y, Kantarci A, Hasturk H, Trackman PC, Malabanan A, Van Dyke TE. Activation of RAGE induces elevated O2- generation by mononuclear phagocytes in diabetes. J Leukoc Biol 2007; 81:520 - 7; http://dx.doi.org/10.1189/jlb.0406262; PMID: 17095613
  • Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 2008; 181:4272 - 8; PMID: 18768885
  • Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2008; 196:9 - 21; http://dx.doi.org/10.1016/j.atherosclerosis.2007.07.025; PMID: 17826783
  • Liang C, Ren Y, Tan H, He Z, Jiang Q, Wu J, et al. Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol 2009; 158:1865 - 73; http://dx.doi.org/10.1111/j.1476-5381.2009.00450.x; PMID: 19917066
  • Matsui T, Takeuchi M, Yamagishi S. Nifedipine, a calcium channel blocker, inhibits inflammatory and fibrogenic gene expressions in advanced glycation end product (AGE)-exposed fibroblasts via mineralocorticoid receptor antagonistic activity. Biochem Biophys Res Commun 2010; 396:566 - 70; http://dx.doi.org/10.1016/j.bbrc.2010.04.149; PMID: 20438710
  • Monnier VM, Kohn RR, Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A 1984; 81:583 - 7; http://dx.doi.org/10.1073/pnas.81.2.583; PMID: 6582514
  • Takahashi M, Kushida K, Ohishi T, Kawana K, Hoshino H, Uchiyama A, et al. Quantitative analysis of crosslinks pyridinoline and pentosidine in articular cartilage of patients with bone and joint disorders. Arthritis Rheum 1994; 37:724 - 8; http://dx.doi.org/10.1002/art.1780370517; PMID: 8185700
  • Forbes JM, Yee LT, Thallas V, Lassila M, Candido R, Jandeleit-Dahm KA, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004; 53:1813 - 23; http://dx.doi.org/10.2337/diabetes.53.7.1813; PMID: 15220206
  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 1994; 91:4766 - 70; http://dx.doi.org/10.1073/pnas.91.11.4766; PMID: 8197133
  • Stitt AW. The maillard reaction in eye diseases. Ann N Y Acad Sci 2005; 1043:582 - 97; http://dx.doi.org/10.1196/annals.1338.066; PMID: 16037281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.