4,790
Views
138
CrossRef citations to date
0
Altmetric
Extra View

3D printed PLA-based scaffolds

A versatile tool in regenerative medicine

, , &
Pages 239-244 | Received 14 May 2013, Accepted 04 Aug 2013, Published online: 19 Aug 2013

References

  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4:518 - 24; http://dx.doi.org/10.1038/nmat1421; PMID: 16003400
  • Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1:245 - 60; http://dx.doi.org/10.1002/term.24; PMID: 18038415
  • Moroni L, Elisseeff J. Biomaterials engineered for integration. Mater Today 2008; 11:44 - 51; http://dx.doi.org/10.1016/S1369-7021(08)70089-0
  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 2004; 22:643 - 52; http://dx.doi.org/10.1016/j.tibtech.2004.10.004; PMID: 15542155
  • Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 2013; 9:5521 - 30; http://dx.doi.org/10.1016/j.actbio.2012.10.041; PMID: 23142224
  • Melchels FP, Feijen J, Grijpma DW. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 2009; 30:3801 - 9; http://dx.doi.org/10.1016/j.biomaterials.2009.03.055; PMID: 19406467
  • Xiong Z, Yan Y, Wang S, Zhang R, Zhang C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 2002; 46:771 - 6; http://dx.doi.org/10.1016/S1359-6462(02)00071-4
  • Navarro M, Ginebra MP, Planell JA, Barrias CC, Barbosa MA. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 2005; 1:411 - 9; http://dx.doi.org/10.1016/j.actbio.2005.03.004; PMID: 16701822
  • Navarro M, Aparicio C, Charles-Harris M, Ginebra MP, Engel E, Planell JA. Development of a biodegrdable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties. Adv Polym Sci 2006; 200:209 - 31; http://dx.doi.org/10.1007/12_068
  • Charles-Harris M, Koch MA, Navarro M, Lacroix D, Engel E, Planell JAA. A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study. J Mater Sci Mater Med 2008; 19:1503 - 13; http://dx.doi.org/10.1007/s10856-008-3390-9; PMID: 18266084
  • Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JW. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2013; 2:186 - 94; http://dx.doi.org/10.1002/adhm.201200159; PMID: 23184876
  • Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010; 107:4872 - 7; http://dx.doi.org/10.1073/pnas.0903269107; PMID: 20194780
  • Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, Visai L. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 2011; 12:1900 - 11; http://dx.doi.org/10.1021/bm200248h; PMID: 21417396
  • Hollister SJ, Murphy WL. Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 2011; 17:459 - 74; http://dx.doi.org/10.1089/ten.teb.2011.0251; PMID: 21902613
  • Yoshida M, Langer R, Lendlein A, Lahann J. From advanced biomedical coatings to multi-functionalized biomaterials. Pol Rev 2006; 46:347 - 75
  • Kim JE, Lee EJ, Kim HE, Koh YH, Jang JH. The impact of immobilization of BMP-2 on PDO membrane for bone regeneration. J Biomed Mater Res A 2012; 100:1488 - 93; http://dx.doi.org/10.1002/jbm.a.34089; PMID: 22396132
  • Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 2011; 32:1280 - 90; http://dx.doi.org/10.1016/j.biomaterials.2010.10.007; PMID: 21035179
  • Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59:249 - 62; http://dx.doi.org/10.1016/j.addr.2007.03.015; PMID: 17482310
  • Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA. Physico-chemical degradation of resorbable phosphate glasses stabilized with TiO2. J Am Ceram Soc 2003; 86:1345 - 52; http://dx.doi.org/10.1111/j.1151-2916.2003.tb03474.x
  • Navarro M, Ginebra MP, Planell JA. Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res A 2003; 67:1009 - 15; http://dx.doi.org/10.1002/jbm.a.20014; PMID: 14613251
  • Navarro M, Engel E, Planell JA, Amaral I, Barbosa M, Ginebra MP. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. J Biomed Mater Res A 2008; 85:477 - 86; http://dx.doi.org/10.1002/jbm.a.31546; PMID: 17729262
  • Aguirre A, González A, Navarro M, Castaño O, Planell JA, Engel E. Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis. Eur Cell Mater 2012; 24:90 - 106, discussion 106; PMID: 22828988
  • Vila OF, Bagó JR, Navarro M, Alieva M, Aguilar E, Engel E, Planell JA, Rubio N, Blanco J. Calcium phosphate glass improves angiogenesis capacity of poly(lactic acid) scaffolds and stimulates differentiation of adipose tissue-derived mesenchymal stromal cells to the endothelial lineage. J Biomed Mater Res A 2013; 101:932 - 41; http://dx.doi.org/10.1002/jbm.a.34391; PMID: 22962041
  • Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2012; 9:401 - 19; http://dx.doi.org/10.1098/rsif.2011.0611; PMID: 22158843
  • Martin RA, Yne S, Hanna JV, Lee PD, Newport RJ, Smith ME, Jones JR. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. . Philos Transct A Math Phys Eng Sci 2012; 370:1422 - 43; http://dx.doi.org/10.1098/rsta.2011.0308
  • Biggs MJP, Richards RG, McFarlane S, Wilkinson CDW, Oreffo ROC, Dalby MJ. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330nm deep microgrooves. J R Soc Interface 2008; 5:1231 - 42; http://dx.doi.org/10.1098/rsif.2008.0035; PMID: 18348958
  • Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007; 6:997 - 1003; http://dx.doi.org/10.1038/nmat2013; PMID: 17891143
  • McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 2011; 10:637 - 44; http://dx.doi.org/10.1038/nmat3058; PMID: 21765399
  • Fong EL, Lamhamedi-Cherradi SE, Burdett E, Ramamoorthy V, Lazar AJ, Kasper FK, Farach-Carson MC, Vishwamitra D, Demicco EG, Menegaz BA, et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci U S A 2013; 110:6500 - 5; http://dx.doi.org/10.1073/pnas.1221403110; PMID: 23576741

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.