2,480
Views
71
CrossRef citations to date
0
Altmetric
Review

Cellular therapy in bone-tendon interface regeneration

&
Pages 13-28 | Received 27 Aug 2013, Accepted 25 Nov 2013, Published online: 09 Dec 2013

References

  • Langer R, Vacanti JP. Tissue engineering. Science 1993; 260:920 - 6; http://dx.doi.org/10.1126/science.8493529; PMID: 8493529
  • Tuan RS. Regenerative medicine in 2012: the coming of age of musculoskeletal tissue engineering. Nat Rev Rheumatol 2013; 9:74 - 6; http://dx.doi.org/10.1038/nrrheum.2012.235; PMID: 23321611
  • Butler DL, Juncosa N, Dressler MR. Functional efficacy of tendon repair processes. Annu Rev Biomed Eng 2004; 6:303 - 29; http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140240; PMID: 15255772
  • Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A 2009; 15:115 - 26; http://dx.doi.org/10.1089/ten.tea.2008.0014; PMID: 18788982
  • Paxton JZ, Baar K, Grover LM. Current progress in enthesis repair: Strategies for interfacial tissue engineering. Orthopedic Muscul Sys, 2012.
  • Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR. The skeletal attachment of tendons--tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:931 - 45; http://dx.doi.org/10.1016/S1095-6433(02)00138-1; PMID: 12485684
  • Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 2006; 208:471 - 90; http://dx.doi.org/10.1111/j.1469-7580.2006.00540.x; PMID: 16637873
  • Thomopoulos S, Genin GM, Galatz LM. The development and morphogenesis of the tendon-to-bone insertion - what development can teach us about healing -. J Musculoskelet Neuronal Interact 2010; 10:35 - 45; PMID: 20190378
  • Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 2003; 21:413 - 9; http://dx.doi.org/10.1016/S0736-0266(03)0057-3; PMID: 12706013
  • Moffat KL, Sun WHS, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu HH. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 2008; 105:7947 - 52; http://dx.doi.org/10.1073/pnas.0712150105; PMID: 18541916
  • Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S. The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. Appl Spectrosc 2008; 62:1285 - 94; http://dx.doi.org/10.1366/000370208786822179; PMID: 19094386
  • Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 2006; 39:1842 - 51; http://dx.doi.org/10.1016/j.jbiomech.2005.05.021; PMID: 16024026
  • Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 2009; 97:976 - 85; http://dx.doi.org/10.1016/j.bpj.2009.05.043; PMID: 19686644
  • Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 1995; 121:1099 - 110; PMID: 7743923
  • Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001; 128:3855 - 66; PMID: 11585810
  • Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell 2003; 113:235 - 48; http://dx.doi.org/10.1016/S0092-8674(03)00268-X; PMID: 12705871
  • Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B Rev 2011; 17:165 - 76; http://dx.doi.org/10.1089/ten.teb.2010.0662; PMID: 21314435
  • Carlberg AL, Tuan RS, Hall DJ. Regulation of scleraxis function by interaction with the bHLH protein E47. Mol Cell Biol Res Commun 2000; 3:82 - 6; http://dx.doi.org/10.1006/mcbr.2000.0195; PMID: 10775504
  • Léjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MHA, Noda M, Duprez D, Houillier P, Rossert J. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem 2007; 282:17665 - 75; http://dx.doi.org/10.1074/jbc.M610113200; PMID: 17430895
  • Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 2007; 134:2697 - 708; http://dx.doi.org/10.1242/dev.001933; PMID: 17567668
  • Asou Y, Nifuji A, Tsuji K, Shinomiya K, Olson EN, Koopman P, Noda M. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res 2002; 20:827 - 33; http://dx.doi.org/10.1016/S0736-0266(01)00169-3; PMID: 12168674
  • Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 2010; 48:635 - 44; http://dx.doi.org/10.1002/dvg.20667; PMID: 20806356
  • Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y, Shukunami C. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 2013; 140:2280 - 8; http://dx.doi.org/10.1242/dev.096354; PMID: 23615282
  • Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 2013; 140:2680 - 90; http://dx.doi.org/10.1242/dev.093906; PMID: 23720048
  • Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423:332 - 6; http://dx.doi.org/10.1038/nature01657; PMID: 12748651
  • Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 2010; 137:2807 - 17; http://dx.doi.org/10.1242/dev.047498; PMID: 20699295
  • Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell 2009; 17:861 - 73; http://dx.doi.org/10.1016/j.devcel.2009.10.010; PMID: 20059955
  • Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res 2007; 25:1621 - 8; http://dx.doi.org/10.1002/jor.20441; PMID: 17600822
  • Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem 2009; 284:29988 - 96; http://dx.doi.org/10.1074/jbc.M109.014811; PMID: 19717568
  • Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A 2012; 18:598 - 608; http://dx.doi.org/10.1089/ten.tea.2011.0338; PMID: 21939397
  • Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 2007; 25:1154 - 63; http://dx.doi.org/10.1002/jor.20418; PMID: 17506506
  • Schwartz AG, Pasteris JD, Genin GM, Daulton TL, Thomopoulos S. Mineral distributions at the developing tendon enthesis. PLoS One 2012; 7:e48630; http://dx.doi.org/10.1371/journal.pone.0048630; PMID: 23152788
  • Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S. Muscle loading is necessary for the formation of a functional tendon enthesis. Bone 2013; 55:44 - 51; http://dx.doi.org/10.1016/j.bone.2013.03.010; PMID: 23542869
  • Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 1991; 73:1507 - 25; PMID: 1748700
  • Tallon C, Maffulli N, Ewen SWB. Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc 2001; 33:1983 - 90; http://dx.doi.org/10.1097/00005768-200112000-00002; PMID: 11740288
  • Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 2012; 21:251 - 65; http://dx.doi.org/10.1016/j.jse.2011.10.003; PMID: 22244069
  • Derwin KA, Badylak SF, Steinmann SP, Iannotti JP. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 2010; 19:467 - 76; http://dx.doi.org/10.1016/j.jse.2009.10.020; PMID: 20189415
  • Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 2004; 86-A:219 - 24; PMID: 14960664
  • Miyasaka KC, Daniel DM, Stone ML, Hirschman P. The incidence of knee ligament injuries in the general population. Am J Knee Surg 1991; 4:3 - 8
  • Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 2006; 39:1 - 20; http://dx.doi.org/10.1016/j.jbiomech.2004.10.025; PMID: 16271583
  • Park MJ, Lee MC, Seong SC. A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. Int Orthop 2001; 25:35 - 9; http://dx.doi.org/10.1007/s002640000199; PMID: 11374265
  • Dines JS, Bedi A, ElAttrache NS, Dines DM. Single-row versus double-row rotator cuff repair: techniques and outcomes. J Am Acad Orthop Surg 2010; 18:83 - 93; PMID: 20118325
  • Uhthoff HK, Seki M, Backman DS, Trudel G, Himori K, Sano H. Tensile strength of the supraspinatus after reimplantation into a bony trough: an experimental study in rabbits. J Shoulder Elbow Surg 2002; 11:504 - 9; http://dx.doi.org/10.1067/mse.2002.126760; PMID: 12378172
  • Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 2001; 17:461 - 76; http://dx.doi.org/10.1053/jars.2001.24059; PMID: 11337712
  • Newsham-West R, Nicholson H, Walton M, Milburn P. Long-term morphology of a healing bone-tendon interface: a histological observation in the sheep model. J Anat 2007; 210:318 - 27; http://dx.doi.org/10.1111/j.1469-7580.2007.00699.x; PMID: 17331180
  • Kinneberg KRC, Galloway MT, Butler DL, Shearn JT. The native cell population does not contribute to central-third graft healing at 6, 12, or 26 weeks in the rabbit patellar tendon. J Orthop Res 2013; 31:638 - 44; http://dx.doi.org/10.1002/jor.22261; PMID: 23138453
  • Kida Y, Morihara T, Matsuda K, Kajikawa Y, Tachiiri H, Iwata Y, Sawamura K, Yoshida A, Oshima Y, Ikeda T, et al. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elbow Surg 2013; 22:197 - 205; http://dx.doi.org/10.1016/j.jse.2012.02.007; PMID: 22543003
  • Wang IE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 2007; 25:1609 - 20; http://dx.doi.org/10.1002/jor.20475; PMID: 17676622
  • He P, Ng KS, Toh SL, Goh JCH. In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 2012; 13:2692 - 703; http://dx.doi.org/10.1021/bm300651q; PMID: 22880933
  • Sun L, Zhou X, Wu B, Tian M. Inhibitory effect of synovial fluid on tendon-to-bone healing: an experimental study in rabbits. Arthroscopy 2012; 28:1297 - 305; http://dx.doi.org/10.1016/j.arthro.2012.02.017; PMID: 22607829
  • Funakoshi T, Martin SD, Schmid TM, Spector M. Distribution of lubricin in the ruptured human rotator cuff and biceps tendon: a pilot study. Clin Orthop Relat Res 2010; 468:1588 - 99; http://dx.doi.org/10.1007/s11999-009-1108-z; PMID: 19798542
  • Bedi A, Kawamura S, Ying L, Rodeo SA. Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel. HSS J 2009; 5:51 - 7; http://dx.doi.org/10.1007/s11420-008-9096-1; PMID: 19052716
  • Nassos JT, ElAttrache NS, Angel MJ, Tibone JE, Limpisvasti O, Lee TQ. A watertight construct in arthroscopic rotator cuff repair. J Shoulder Elbow Surg 2012; 21:589 - 96; http://dx.doi.org/10.1016/j.jse.2011.04.008; PMID: 21782471
  • Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 2003; 125:106 - 13; http://dx.doi.org/10.1115/1.1536660; PMID: 12661203
  • Galatz LM, Charlton N, Das R, Kim HM, Havlioglu N, Thomopoulos S. Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elbow Surg 2009; 18:669 - 75; http://dx.doi.org/10.1016/j.jse.2009.02.016; PMID: 19427237
  • Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. The role of mechanobiology in tendon healing. J Shoulder Elbow Surg 2012; 21:228 - 37; http://dx.doi.org/10.1016/j.jse.2011.11.002; PMID: 22244066
  • Ramalingam M, Young MF, Thomas V, Sun L, Chow LC, Tison CK, Chatterjee K, Miles WC, Simon CG Jr.. Nanofiber scaffold gradients for interfacial tissue engineering. J Biomater Appl 2013; 27:695 - 705; http://dx.doi.org/10.1177/0885328211423783; PMID: 22286209
  • Phillips JE, Burns KL, Le Doux JM, Guldberg RE, García AJ. Engineering graded tissue interfaces. Proc Natl Acad Sci U S A 2008; 105:12170 - 5; http://dx.doi.org/10.1073/pnas.0801988105; PMID: 18719120
  • Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 2006; 12:3497 - 508; http://dx.doi.org/10.1089/ten.2006.12.3497; PMID: 17518686
  • Zhang X, Bogdanowicz D, Erisken C, Lee NM, Lu HH. Biomimetic scaffold design for functional and integrative tendon repair. J Shoulder Elbow Surg 2012; 21:266 - 77; http://dx.doi.org/10.1016/j.jse.2011.11.016; PMID: 22244070
  • Oliva F, Via AG, Maffulli N. Role of growth factors in rotator cuff healing. Sports Med Arthrosc 2011; 19:218 - 26; http://dx.doi.org/10.1097/JSA.0b013e3182250c78; PMID: 21822105
  • Garofalo R, Cesari E, Vinci E, Castagna A. Role of metalloproteinases in rotator cuff tear. Sports Med Arthrosc 2011; 19:207 - 12; http://dx.doi.org/10.1097/JSA.0b013e318227b07b; PMID: 21822103
  • Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, et al. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 2006; 116:940 - 52; http://dx.doi.org/10.1172/JCI22689; PMID: 16585960
  • Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 1999; 27:476 - 88; PMID: 10424218
  • Thomopoulos S, Kim HM, Silva MJ, Ntouvali E, Manning CN, Potter R, Seeherman H, Gelberman RH. Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model. J Orthop Res 2012; 30:1702 - 9; http://dx.doi.org/10.1002/jor.22151; PMID: 22618762
  • Gulotta LV, Kovacevic D, Ying L, Ehteshami JR, Montgomery S, Rodeo SA. Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am J Sports Med 2008; 36:1290 - 7; http://dx.doi.org/10.1177/0363546508314396; PMID: 18319348
  • Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos S. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res 2011; 52:87 - 98; http://dx.doi.org/10.3109/03008207.2010.483026; PMID: 20615095
  • Matsumoto T, Ingham SM, Mifune Y, Osawa A, Logar A, Usas A, Kuroda R, Kurosaka M, Fu FH, Huard J. Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev 2012; 21:859 - 72; http://dx.doi.org/10.1089/scd.2010.0528; PMID: 21732814
  • Matsumoto T, Kubo S, Sasaki K, Kawakami Y, Oka S, Sasaki H, Takayama K, Tei K, Matsushita T, Mifune Y, et al. Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. Am J Sports Med 2012; 40:1296 - 302; http://dx.doi.org/10.1177/0363546512439026; PMID: 22427618
  • Mifune Y, Matsumoto T, Ota S, Nishimori M, Usas A, Kopf S, Kuroda R, Kurosaka M, Fu FH, Huard J. Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction. Cell Transplant 2012; 21:1651 - 65; http://dx.doi.org/10.3727/096368912X647234; PMID: 22732227
  • Mifune Y, Matsumoto T, Takayama K, Terada S, Sekiya N, Kuroda R, Kurosaka M, Fu FH, Huard J. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials 2013; 34:5476 - 87; http://dx.doi.org/10.1016/j.biomaterials.2013.04.013; PMID: 23632324
  • Wong MWN, Qin L, Tai JKO, Lee SKM, Leung KS, Chan KM. Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction--a preliminary histological observation. J Biomed Mater Res B Appl Biomater 2004; 70:362 - 7; PMID: 15264320
  • Wong MWN, Qin L, Lee KM, Leung KS. Articular cartilage increases transition zone regeneration in bone-tendon junction healing. Clin Orthop Relat Res 2009; 467:1092 - 100; http://dx.doi.org/10.1007/s11999-008-0606-8; PMID: 18987921
  • Nourissat G, Diop A, Maurel N, Salvat C, Dumont S, Pigenet A, Gosset M, Houard X, Berenbaum F. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model. PLoS One 2010; 5:e12248; http://dx.doi.org/10.1371/journal.pone.0012248; PMID: 20805884
  • Loeffler BJ, Scannell BP, Peindl RD, Connor P, Davis DE, Hoelscher GL, Norton HJ, Hanley EN Jr., Gruber HE. Cell-based tissue engineering augments tendon-to-bone healing in a rat supraspinatus model. J Orthop Res 2013; 31:407 - 12; http://dx.doi.org/10.1002/jor.22234; PMID: 23070709
  • Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5:32 - 45; http://dx.doi.org/10.1186/ar614; PMID: 12716446
  • Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 2008; 14:1615 - 27; http://dx.doi.org/10.1089/ten.tea.2006.0415; PMID: 18759661
  • Awad HA, Butler DL, Boivin GP, Smith FNL, Malaviya P, Huibregtse B, Caplan AI. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999; 5:267 - 77; http://dx.doi.org/10.1089/ten.1999.5.267; PMID: 10434073
  • Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213:341 - 7; http://dx.doi.org/10.1002/jcp.21200; PMID: 17620285
  • Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 2004; 20:899 - 910; PMID: 15525922
  • Ouyang HW, Goh JCH, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 2004; 32:321 - 7; http://dx.doi.org/10.1177/0095399703258682; PMID: 14977654
  • Soon MYH, Hassan A, Hui JHR, Goh JCH, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med 2007; 35:962 - 71; http://dx.doi.org/10.1177/0363546507300057; PMID: 17400750
  • Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med 2009; 37:2126 - 33; http://dx.doi.org/10.1177/0363546509339582; PMID: 19684297
  • Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med 2011; 39:180 - 7; http://dx.doi.org/10.1177/0363546510379339; PMID: 20956264
  • Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 1997; 100:321 - 30; http://dx.doi.org/10.1172/JCI119537; PMID: 9218508
  • Forslund C, Aspenberg P. Tendon healing stimulated by injected CDMP-2. Med Sci Sports Exerc 2001; 33:685 - 7; http://dx.doi.org/10.1097/00005768-200105000-00001; PMID: 11323533
  • Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 2011; 39:1282 - 9; http://dx.doi.org/10.1177/0363546510395485; PMID: 21335341
  • Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med 2010; 38:1429 - 37; http://dx.doi.org/10.1177/0363546510361235; PMID: 20400753
  • Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002; 99:4397 - 402; http://dx.doi.org/10.1073/pnas.052716199; PMID: 11917104
  • Thomopoulos S, Soslowsky LJ, Flanagan CL, Tun S, Keefer CC, Mastaw J, Carpenter JE. The effect of fibrin clot on healing rat supraspinatus tendon defects. J Shoulder Elbow Surg 2002; 11:239 - 47; http://dx.doi.org/10.1067/mse.2002.122228; PMID: 12070496
  • Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 2008; 26:1 - 9; http://dx.doi.org/10.1002/jor.20456; PMID: 17676628
  • Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 2008; 86:1 - 12; http://dx.doi.org/10.1002/jbm.a.32073; PMID: 18442111
  • Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model. Am J Sports Med 2012; 40:1259 - 68; http://dx.doi.org/10.1177/0363546512442343; PMID: 22491821
  • Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 2012; 30:1869 - 78; http://dx.doi.org/10.1002/jor.22181; PMID: 22778049
  • Li H, Jiang J, Wu Y, Chen S. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body. Int Orthop 2012; 36:665 - 9; http://dx.doi.org/10.1007/s00264-011-1346-z; PMID: 22009448
  • Karaoglu S, Celik C, Korkusuz P. The effects of bone marrow or periosteum on tendon-to-bone tunnel healing in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2009; 17:170 - 8; http://dx.doi.org/10.1007/s00167-008-0646-3; PMID: 18941736
  • Chen CH, Chen WJ, Shih CH, Yang CY, Liu SJ, Lin PY. Enveloping the tendon graft with periosteum to enhance tendon-bone healing in a bone tunnel: A biomechanical and histologic study in rabbits. Arthroscopy 2003; 19:290 - 6; http://dx.doi.org/10.1053/jars.2003.50014; PMID: 12627154
  • Chang CH, Chen CH, Su CY, Liu HT, Yu CM. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histological study in rabbits. Knee Surg Sports Traumatol Arthrosc 2009; 17:1447 - 53; http://dx.doi.org/10.1007/s00167-009-0809-x; PMID: 19440695
  • Chen CH, Chang CH, Wang KC, Su CI, Liu HT, Yu CM, Wong CB, Wang IC, Whu SW, Liu HW. Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo. Knee Surg Sports Traumatol Arthrosc 2011; 19:1597 - 607; http://dx.doi.org/10.1007/s00167-010-1373-0; PMID: 21327764
  • Chen C-H, Chang C-H, Su C-I, Wang K-C, Liu H-T, Yu C-M, Wong CB, Wang IC. Arthroscopic single-bundle anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft: clinical outcome at 2 to 7 years. Arthroscopy 2010; 26:907 - 17; http://dx.doi.org/10.1016/j.arthro.2009.11.011; PMID: 20620790
  • Scheibel M, Brown A, Woertler K, Imhoff AB. Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc 2007; 15:305 - 14; http://dx.doi.org/10.1007/s00167-006-0173-z; PMID: 16927071
  • Ellera Gomes JL, da Silva RC, Silla LMR, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc 2012; 20:373 - 7; http://dx.doi.org/10.1007/s00167-011-1607-9; PMID: 21773831
  • Gladstone JN, Bishop JY, Lo IKY, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 2007; 35:719 - 28; http://dx.doi.org/10.1177/0363546506297539; PMID: 17337727
  • Contopoulos-Ioannidis DG, Ntzani E, Ioannidis JPA. Translation of highly promising basic science research into clinical applications. Am J Med 2003; 114:477 - 84; http://dx.doi.org/10.1016/S0002-9343(03)00013-5; PMID: 12731504
  • Moran CJ, Barry FP, Maher SA, Shannon FJ, Rodeo SA. Advancing regenerative surgery in orthopaedic sports medicine: the critical role of the surgeon. Am J Sports Med 2012; 40:934 - 44; http://dx.doi.org/10.1177/0363546511426677; PMID: 22085730
  • Evans CH, Palmer GD, Pascher A, Porter R, Kwong FN, Gouze E, Gouze JN, Liu F, Steinert A, Betz O, et al. Facilitated endogenous repair: making tissue engineering simple, practical, and economical. Tissue Eng 2007; 13:1987 - 93; http://dx.doi.org/10.1089/ten.2006.0302; PMID: 17518747
  • Jakob F, Ebert R, Rudert M, Nöth U, Walles H, Docheva D, Schieker M, Meinel L, Groll J. In situ guided tissue regeneration in musculoskeletal diseases and aging : Implementing pathology into tailored tissue engineering strategies. Cell Tissue Res 2012; 347:725 - 35; http://dx.doi.org/10.1007/s00441-011-1237-z; PMID: 22011785
  • Derwin KA, Baker AR, Iannotti JP, McCarron JA. Preclinical models for translating regenerative medicine therapies for rotator cuff repair. Tissue Eng Part B Rev 2010; 16:21 - 30; http://dx.doi.org/10.1089/ten.teb.2009.0209; PMID: 19663651
  • Longo UG, Forriol F, Campi S, Maffulli N, Denaro V. Animal models for translational research on shoulder pathologies: from bench to bedside. Sports Med Arthrosc 2011; 19:184 - 93; http://dx.doi.org/10.1097/JSA.0b013e318205470e; PMID: 21822100
  • Voloshin I, Gelinas J, Maloney MD, O’Keefe RJ, Bigliani LU, Blaine TA. Proinflammatory cytokines and metalloproteases are expressed in the subacromial bursa in patients with rotator cuff disease. Arthroscopy 2005; 21:e1 - , e9; http://dx.doi.org/10.1016/j.arthro.2005.05.017; PMID: 16171632
  • Lui PPY, Maffulli N, Rolf C, Smith RKW. What are the validated animal models for tendinopathy?. Scand J Med Sci Sports 2011; 21:3 - 17; http://dx.doi.org/10.1111/j.1600-0838.2010.01164.x; PMID: 20673247
  • Wang JHC. Mechanobiology of tendon. J Biomech 2006; 39:1563 - 82; http://dx.doi.org/10.1016/j.jbiomech.2005.05.011; PMID: 16000201
  • Ambrosio F, Wolf SL, Delitto A, Fitzgerald GK, Badylak SF, Boninger ML, Russell AJ. The emerging relationship between regenerative medicine and physical therapeutics. Phys Ther 2010; 90:1807 - 14; http://dx.doi.org/10.2522/ptj.20100030; PMID: 21030663
  • Virchenko O, Aspenberg P. How can one platelet injection after tendon injury lead to a stronger tendon after 4 weeks? Interplay between early regeneration and mechanical stimulation. Acta Orthop 2006; 77:806 - 12; http://dx.doi.org/10.1080/17453670610013033; PMID: 17068715
  • Lovric V, Ledger M, Goldberg J, Harper W, Bertollo N, Pelletier MH, Oliver RA, Yu Y, Walsh WR. The effects of low-intensity pulsed ultrasound on tendon-bone healing in a transosseous-equivalent sheep rotator cuff model. Knee Surg Sports Traumatol Arthrosc 2013; 21:466 - 75; http://dx.doi.org/10.1007/s00167-012-1972-z; PMID: 22466014
  • Strauch B, Patel MK, Rosen DJ, Mahadevia S, Brindzei N, Pilla AA. Pulsed magnetic field therapy increases tensile strength in a rat Achilles’ tendon repair model. J Hand Surg Am 2006; 31:1131 - 5; http://dx.doi.org/10.1016/j.jhsa.2006.03.024; PMID: 16945715
  • Chow DHK, Suen PK, Fu LH, Cheung WH, Leung KS, Wong MWN, Qin L. Extracorporeal shockwave therapy for treatment of delayed tendon-bone insertion healing in a rabbit model: a dose-response study. Am J Sports Med 2012; 40:2862 - 71; http://dx.doi.org/10.1177/0363546512461596; PMID: 23075803
  • Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci U S A 2002; 99:13577 - 82; http://dx.doi.org/10.1073/pnas.202235299; PMID: 12368473
  • Tsai MT, Li WJ, Tuan RS, Chang WH. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 2009; 27:1169 - 74; http://dx.doi.org/10.1002/jor.20862; PMID: 19274753
  • Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 2008; 332:469 - 78; http://dx.doi.org/10.1007/s00441-008-0610-z; PMID: 18418628
  • Shahab-Osterloh S, Witte F, Hoffmann A, Winkel A, Laggies S, Neumann B, Seiffart V, Lindenmaier W, Gruber AD, Ringe J, et al. Mesenchymal stem cell-dependent formation of heterotopic tendon-bone insertions (osteotendinous junctions). Stem Cells 2010; 28:1590 - 601; http://dx.doi.org/10.1002/stem.487; PMID: 20882636
  • Lui PPY, Zhang P, Chan KM, Qin L. Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 2010; 5 14; http://dx.doi.org/10.1186/1749-799X-5-59; PMID: 20727196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.