4,067
Views
122
CrossRef citations to date
0
Altmetric
Review

Activity of mesenchymal stem cells in therapies for chronic skin wound healing

Pages 29-37 | Received 27 Jul 2013, Accepted 25 Nov 2013, Published online: 10 Dec 2013

References

  • Beckles GL, Chou CF, CDC. Diabetes - United States, 2006 and 2010. CDC MMWR Surveill Summ 2013; 62:99-104. PMID: 24264498.
  • Stuart M. Advanced Wound Care: The Device Industry’s New Billion Dollar Product Market. Start-Up 2007; 2007:20-26.
  • Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 1999; 7:201 - 7; http://dx.doi.org/10.1046/j.1524-475X.1999.00201.x; PMID: 10781211
  • Naughton G, Mansbridge J, Gentzkow G. A metabolically active human dermal replacement for the treatment of diabetic foot ulcers. Artif Organs 1997; 21:1203 - 10; http://dx.doi.org/10.1111/j.1525-1594.1997.tb00476.x; PMID: 9384327
  • Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 2004; 12:288 - 94; http://dx.doi.org/10.1111/j.1067-1927.2004.012304.x; PMID: 15225207
  • Iorio ML, Goldstein J, Adams M, Steinberg J, Attinger C. Functional limb salvage in the diabetic patient: the use of a collagen bilayer matrix and risk factors for amputation. Plast Reconstr Surg 2011; 127:260 - 7; http://dx.doi.org/10.1097/PRS.0b013e3181f95c4b; PMID: 20938372
  • Rees RS, Robson MC, Smiell JM, Perry BH. Becaplermin gel in the treatment of pressure ulcers: a phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen 1999; 7:141 - 7; http://dx.doi.org/10.1046/j.1524-475X.1999.00141.x; PMID: 10417749
  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97:2892 - 923; http://dx.doi.org/10.1002/jps.21210; PMID: 17963217
  • Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012; 2012:190436; http://dx.doi.org/10.1155/2012/190436; PMID: 22567251
  • Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 2012; 1:142 - 9; http://dx.doi.org/10.5966/sctm.2011-0018; PMID: 23197761
  • Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9:204; http://dx.doi.org/10.1186/ar2116; PMID: 17316462
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143 - 7; http://dx.doi.org/10.1126/science.284.5411.143; PMID: 10102814
  • Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 1995; 92:4857 - 61; http://dx.doi.org/10.1073/pnas.92.11.4857; PMID: 7761413
  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418:41 - 9; http://dx.doi.org/10.1038/nature00870; PMID: 12077603
  • Hung S-C, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 2002; 20:249 - 58; http://dx.doi.org/10.1634/stemcells.20-3-249; PMID: 12004083
  • Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Ther 2013; 4:81; http://dx.doi.org/10.1186/scrt232; PMID: 23845279
  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279 - 95; http://dx.doi.org/10.1091/mbc.E02-02-0105; PMID: 12475952
  • In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22:1338 - 45; http://dx.doi.org/10.1634/stemcells.2004-0058; PMID: 15579651
  • Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006; 37:967 - 76; http://dx.doi.org/10.1038/sj.bmt.1705358; PMID: 16670702
  • Gnecchi M, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol 2009; 482:281 - 94; http://dx.doi.org/10.1007/978-1-59745-060-7_18; PMID: 19089363
  • Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol 2013; 1036:47 - 61; http://dx.doi.org/10.1007/978-1-62703-511-8_4; PMID: 23807785
  • Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 2007; 211:682 - 91; http://dx.doi.org/10.1002/jcp.20977; PMID: 17238135
  • Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008; 17:1095 - 107; http://dx.doi.org/10.1089/scd.2007.0154; PMID: 19006451
  • Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A, Igura K, Satoh H, Yokomi I, Nishimura T, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 2011; 112:1206 - 18; http://dx.doi.org/10.1002/jcb.23042; PMID: 21312238
  • Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25:1384 - 92; http://dx.doi.org/10.1634/stemcells.2006-0709; PMID: 17332507
  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24:1294 - 301; http://dx.doi.org/10.1634/stemcells.2005-0342; PMID: 16410387
  • Nagano M, Kimura K, Yamashita T, Ohneda K, Nozawa D, Hamada H, Yoshikawa H, Ochiai N, Ohneda O. Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev 2010; 19:1195 - 210; http://dx.doi.org/10.1089/scd.2009.0447; PMID: 20345248
  • Chong PP, Selvaratnam L, Abbas AA, Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 2012; 30:634 - 42; http://dx.doi.org/10.1002/jor.21556; PMID: 21922534
  • Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 2012; 18:128 - 34; http://dx.doi.org/10.1016/j.molmed.2011.10.004; PMID: 22118960
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101:3722 - 9; http://dx.doi.org/10.1182/blood-2002-07-2104; PMID: 12506037
  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107:367 - 72; http://dx.doi.org/10.1182/blood-2005-07-2657; PMID: 16141348
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815 - 22; http://dx.doi.org/10.1182/blood-2004-04-1559; PMID: 15494428
  • Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3:e1886; http://dx.doi.org/10.1371/journal.pone.0001886; PMID: 18382669
  • Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 25:1168 - 73; http://dx.doi.org/10.1161/01.ATV.0000165696.25680.ce; PMID: 15831811
  • Singer AJ, Clark RA. Cutaneous Wound Healing. N Engl J Med 1999; 341:738 - 46; PMID: 10471461
  • Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol 2012; 26:812 - 20; http://dx.doi.org/10.1111/j.1468-3083.2011.04415.x; PMID: 22211801
  • Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 1998; 152:1445 - 52; PMID: 9626049
  • Knighton DR, Phillips GD, Fiegel VD. Wound healing angiogenesis: indirect stimulation by basic fibroblast growth factor. J Trauma 1990; 30:Suppl S134 - 44; http://dx.doi.org/10.1097/00005373-199012001-00027; PMID: 1701493
  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16:585 - 601; http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x; PMID: 19128254
  • Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25:19 - 25; http://dx.doi.org/10.1016/j.clindermatol.2006.12.005; PMID: 17276197
  • Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 1998; 176:Suppl 26S - 38S; http://dx.doi.org/10.1016/S0002-9610(98)00183-4; PMID: 9777970
  • Fahey TJ 3rd, Sadaty A, Jones WG 2nd, Barber A, Smoller B, Shires GT. Diabetes impairs the late inflammatory response to wound healing. J Surg Res 1991; 50:308 - 13; http://dx.doi.org/10.1016/0022-4804(91)90196-S; PMID: 2020184
  • Stanley AC, Park HY, Phillips TJ, Russakovsky V, Menzoian JO. Reduced growth of dermal fibroblasts from chronic venous ulcers can be stimulated with growth factors. J Vasc Surg 1997; 26:994 - 9, discussion 999-1001; http://dx.doi.org/10.1016/S0741-5214(97)70012-0; PMID: 9423715
  • Chen SM, Ward SI, Olutoye OO, Diegelmann RF, Kelman Cohen I. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair Regen 1997; 5:23 - 32; http://dx.doi.org/10.1046/j.1524-475X.1997.50108.x; PMID: 16984454
  • Nwomeh BC, Liang HX, Cohen IK, Yager DR. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res 1999; 81:189 - 95; http://dx.doi.org/10.1006/jsre.1998.5495; PMID: 9927539
  • Pirilä E, Korpi JT, Korkiamäki T, Jahkola T, Gutierrez-Fernandez A, Lopez-Otin C, Saarialho-Kere U, Salo T, Sorsa T. Collagenase-2 (MMP-8) and matrilysin-2 (MMP-26) expression in human wounds of different etiologies. Wound Repair Regen 2007; 15:47 - 57; http://dx.doi.org/10.1111/j.1524-475X.2006.00184.x; PMID: 17244319
  • Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 1996; 107:743 - 8; http://dx.doi.org/10.1111/1523-1747.ep12365637; PMID: 8875960
  • Ghanassia E, Villon L, Thuan Dit Dieudonné JF, Boegner C, Avignon A, Sultan A. Long-term outcome and disability of diabetic patients hospitalized for diabetic foot ulcers: a 6.5-year follow-up study. Diabetes Care 2008; 31:1288 - 92; http://dx.doi.org/10.2337/dc07-2145; PMID: 18390801
  • Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet 2005; 366:1719 - 24; http://dx.doi.org/10.1016/S0140-6736(05)67698-2; PMID: 16291066
  • Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 2012; 66:384 - 93; http://dx.doi.org/10.1111/j.1742-1241.2011.02886.x; PMID: 22284892
  • Procházka V, Gumulec J, Jalůvka F, Salounová D, Jonszta T, Czerný D, Krajča J, Urbanec R, Klement P, Martinek J, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 2010; 19:1413 - 24; http://dx.doi.org/10.3727/096368910X514170; PMID: 20529449
  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13:1299 - 312; http://dx.doi.org/10.1089/ten.2006.0278; PMID: 17518741
  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92:26 - 36; http://dx.doi.org/10.1016/j.diabres.2010.12.010; PMID: 21216483
  • Wan J, et al. Transplantation of bone marrow-derived mesenchymal stem cells promotes delayed wound healing in diabetic rats. Journal of diabetes research, 2013. 2013: p. 647107.
  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105:2214 - 9; http://dx.doi.org/10.1182/blood-2004-07-2921; PMID: 15514012
  • Yang SH, Park MJ, Yoon IH, Kim SY, Hong SH, Shin JY, Nam HY, Kim YH, Kim B, Park CG. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 2009; 41:315 - 24; http://dx.doi.org/10.3858/emm.2009.41.5.035; PMID: 19307751
  • Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N, Sensebé L, Zhang Y, Gorin NC, Thierry D, et al. Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr 2007; 13:217 - 26; http://dx.doi.org/10.3727/000000006780666957; PMID: 17605296
  • Wang Y, Crisostomo PR, Wang M, Markel TA, Novotny NM, Meldrum DR. TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1115 - 23; http://dx.doi.org/10.1152/ajpregu.90383.2008; PMID: 18685072
  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2:141 - 50; http://dx.doi.org/10.1016/j.stem.2007.11.014; PMID: 18371435
  • Li P, Li SH, Wu J, Zang WF, Dhingra S, Sun L, Weisel RD, Li RK. Interleukin-6 downregulation with mesenchymal stem cell differentiation results in loss of immunoprivilege. J Cell Mol Med 2013; 17:1136 - 45; PMID: 23802625
  • Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li RK. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010; 122:2419 - 29; http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955971; PMID: 21098445
  • Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182:1047 - 57; http://dx.doi.org/10.1164/rccm.201001-0010OC; PMID: 20558630
  • Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28:2229 - 38; http://dx.doi.org/10.1002/stem.544; PMID: 20945332
  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998; 42:2206 - 14; PMID: 9736536
  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002; 169:3883 - 91; PMID: 12244186
  • Yates CC, Whaley D, Babu R, Zhang J, Krishna P, Beckman E, Pasculle AW, Wells A. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials 2007; 28:3977 - 86; http://dx.doi.org/10.1016/j.biomaterials.2007.05.008; PMID: 17561250
  • Thawatchai M, Seiichi T, Ratana R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 2008; 72:43 - 51; http://dx.doi.org/10.1016/j.carbpol.2007.07.025
  • Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, Tawil B. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 2006; 12:2385 - 96; http://dx.doi.org/10.1089/ten.2006.12.2385; PMID: 16968177
  • Bensaïd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003; 24:2497 - 502; http://dx.doi.org/10.1016/S0142-9612(02)00618-X; PMID: 12695076
  • Roy DC, Mooney NA, Raeman CH, Dalecki D, Hocking DC. Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice. Tissue Eng Part A 2013; 19:2517 - 26; http://dx.doi.org/10.1089/ten.tea.2013.0024; PMID: 23808793
  • Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003; 196:245 - 50; http://dx.doi.org/10.1002/jcp.10260; PMID: 12811816
  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180:2581 - 7; PMID: 18250469
  • Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000; 102:199 - 209; http://dx.doi.org/10.1016/S0092-8674(00)00025-8; PMID: 10943840
  • Chun JL, O’Brien R, Song MH, Wondrasch BF, Berry SE. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med 2013; 2:68 - 80; http://dx.doi.org/10.5966/sctm.2012-0107; PMID: 23283493
  • Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25:2648 - 59; http://dx.doi.org/10.1634/stemcells.2007-0226; PMID: 17615264
  • Janeczek Portalska K, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Endothelial differentiation of mesenchymal stromal cells. PLoS One 2012; 7:e46842; http://dx.doi.org/10.1371/journal.pone.0046842; PMID: 23056481
  • Portalska KJ, Groen N, Krenning G, Georgi N, Mentink A, Harmsen MC, van Blitterswijk C, de Boer J. The effect of donor variation and senescence on endothelial differentiation of human mesenchymal stromal cells. Tissue Eng Part A 2013; 19:2318 - 29; http://dx.doi.org/10.1089/ten.tea.2012.0646; PMID: 23676150
  • Bagó JR, Alieva M, Soler C, Rubio N, Blanco J. Endothelial differentiation of adipose tissue-derived mesenchymal stromal cells in glioma tumors: implications for cell-based therapy. Mol Ther 2013; 21:1758 - 66; http://dx.doi.org/10.1038/mt.2013.145; PMID: 23760448
  • Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 2006; 26:545 - 55; http://dx.doi.org/10.1038/sj.jcbfm.9600214; PMID: 16121128
  • Blocki A, Wang Y, Koch M, Peh P, Beyer S, Law P, Hui J, Raghunath M. Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev 2013; 22:2347 - 55; http://dx.doi.org/10.1089/scd.2012.0415; PMID: 23600480
  • Krisp C, Jacobsen F, McKay MJ, Molloy MP, Steinstraesser L, Wolters DA. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics 2013; 13:2670 - 81; http://dx.doi.org/10.1002/pmic.201200502; PMID: 23798543
  • Herrmann JL, Weil BR, Abarbanell AM, Wang Y, Poynter JA, Manukyan MC, Meldrum DR. IL-6 and TGF-α costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms. Shock 2011; 35:512 - 6; http://dx.doi.org/10.1097/SHK.0b013e31820b2fb9; PMID: 21263382
  • Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164:1935 - 47; http://dx.doi.org/10.1016/S0002-9440(10)63754-6; PMID: 15161630
  • Roura S, Bagó JR, Soler-Botija C, Pujal JM, Gálvez-Montón C, Prat-Vidal C, Llucià-Valldeperas A, Blanco J, Bayes-Genis A. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo. PLoS One 2012; 7:e49447; http://dx.doi.org/10.1371/journal.pone.0049447; PMID: 23166670
  • Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15:42 - 9; http://dx.doi.org/10.1038/nm.1905; PMID: 19098906
  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111:1327 - 33; http://dx.doi.org/10.1182/blood-2007-02-074997; PMID: 17951526
  • Bouffi C, Bony C, Courties G, Jorgensen C, Noël D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 2010; 5:e14247; http://dx.doi.org/10.1371/journal.pone.0014247; PMID: 21151872
  • Liechty KW, Kim HB, Adzick NS, Crombleholme TM. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 2000; 35:866 - 72, discussion 872-3; http://dx.doi.org/10.1053/jpsu.2000.6868; PMID: 10873028
  • Sato Y, Ohshima T, Kondo T. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun 1999; 265:194 - 9; http://dx.doi.org/10.1006/bbrc.1999.1455; PMID: 10548513
  • Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick PW, Liechty KW. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 2008; 128:1852 - 60; http://dx.doi.org/10.1038/sj.jid.5701232; PMID: 18200061
  • Senel O, Cetinkale O, Ozbay G, Ahçioğlu F, Bulan R. Oxygen free radicals impair wound healing in ischemic rat skin. Ann Plast Surg 1997; 39:516 - 23; http://dx.doi.org/10.1097/00000637-199711000-00012; PMID: 9374149
  • Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res 2008; 58:165 - 71; http://dx.doi.org/10.1016/j.phrs.2008.06.004; PMID: 18617006
  • Wu Y, Huang S, Enhe J, Ma K, Yang S, Sun T, Fu X. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 2013; Forthcoming http://dx.doi.org/10.1111/iwj.12034; PMID: 23409729
  • Yu Y, Lu L, Qian X, Chen N, Yao A, Pu L, Zhang F, Li X, Kong L, Sun B, et al. Antifibrotic effect of hepatocyte growth factor-expressing mesenchymal stem cells in small-for-size liver transplant rats. Stem Cells Dev 2010; 19:903 - 14; http://dx.doi.org/10.1089/scd.2009.0254; PMID: 20025519
  • Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, Akasaka Y, Ishii T, Jimbow K. Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res 2004; 120:47 - 55; http://dx.doi.org/10.1016/j.jss.2003.08.242; PMID: 15172189
  • Satish L, Babu M, Tran KT, Hebda PA, Wells A. Keloid fibroblast responsiveness to epidermal growth factor and activation of downstream intracellular signaling pathways. Wound Repair Regen 2004; 12:183 - 92; http://dx.doi.org/10.1111/j.1067-1927.2004.012111.x; PMID: 15086770
  • Conway K, Ruge F, Price P, Harding KG, Jiang WG. Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen 2007; 15:683 - 92; http://dx.doi.org/10.1111/j.1524-475X.2007.00296.x; PMID: 17971014
  • Mou S, Wang Q, Shi B, Gu L, Ni Z. Hepatocyte growth factor suppresses transforming growth factor-beta-1 and type III collagen in human primary renal fibroblasts. Kaohsiung J Med Sci 2009; 25:577 - 87; http://dx.doi.org/10.1016/S1607-551X(09)70560-1; PMID: 19858036
  • Bevan D, Gherardi E, Fan TP, Edwards D, Warn R. Diverse and potent activities of HGF/SF in skin wound repair. J Pathol 2004; 203:831 - 8; http://dx.doi.org/10.1002/path.1578; PMID: 15221943
  • Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010; 5:e9539; http://dx.doi.org/10.1371/journal.pone.0009539; PMID: 20209061
  • Wang L, Pasha Z, Wang S, Li N, Feng Y, Lu G, Millard RW, Ashraf M. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction. PLoS One 2013; 8:e60087; http://dx.doi.org/10.1371/journal.pone.0060087; PMID: 23536905
  • Tang Y, Cai B, Yuan F, He X, Lin X, Wang J, Wang Y, Yang GY. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplant 2013; Forthcoming http://dx.doi.org/10.3727/096368913x667510; PMID: 23635511
  • Saini U, Gumina RJ, Wolfe B, Kuppusamy ML, Kuppusamy P, Boudoulas KD. Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. J Cell Biochem 2013; 114:2612 - 23; http://dx.doi.org/10.1002/jcb.24609; PMID: 23794477
  • Chang C-P, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013; 124:165 - 76; http://dx.doi.org/10.1042/CS20120226; PMID: 22876972
  • Tran KT, Griffith L, Wells A. Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 2004; 12:262 - 8; http://dx.doi.org/10.1111/j.1067-1927.2004.012302.x; PMID: 15225204
  • Fan VH, Tamama K, Au A, Littrell R, Richardson LB, Wright JW, Wells A, Griffith LG. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 2007; 25:1241 - 51; http://dx.doi.org/10.1634/stemcells.2006-0320; PMID: 17234993
  • Rodrigues M, et al. Surface Tethered Epidermal Growth Factor Protects Proliferating and Differentiating Multipotential Stromal Cells from FasL Induced Apoptosis. [Epub ahead of print] Stem Cells 2012; PMID: 22948863
  • Rodrigues M, Yates CC, Nuschke A, Griffith L, Wells A. The matrikine tenascin-C protects multipotential stromal cells/mesenchymal stem cells from death cytokines such as FasL. Tissue Eng Part A 2013; 19:1972 - 83; http://dx.doi.org/10.1089/ten.tea.2012.0568; PMID: 23541003
  • Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 1999; 75:424 - 36; http://dx.doi.org/10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8; PMID: 10536366
  • Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2001; 19:408 - 18; http://dx.doi.org/10.1634/stemcells.19-5-408; PMID: 11553849
  • Mohanty ST, Cairney CJ, Chantry AD, Madan S, Fernandes JA, Howe SJ, Moore HD, Thompson MJ, Chen B, Thrasher A, et al. A small molecule modulator of prion protein increases human mesenchymal stem cell lifespan, ex vivo expansion, and engraftment to bone marrow in NOD/SCID mice. Stem Cells 2012; 30:1134 - 43; http://dx.doi.org/10.1002/stem.1065; PMID: 22367629
  • Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 2012; 113:2806 - 12; http://dx.doi.org/10.1002/jcb.24166; PMID: 22511358
  • Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9:12; http://dx.doi.org/10.1186/1478-811X-9-12; PMID: 21569606
  • Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci 2012; 66:29 - 36; http://dx.doi.org/10.1016/j.jdermsci.2012.02.002; PMID: 22398148
  • Stoff A, Rivera AA, Sanjib Banerjee N, Moore ST, Michael Numnum T, Espinosa-de-Los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D, et al. Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 2009; 18:362 - 9; http://dx.doi.org/10.1111/j.1600-0625.2008.00792.x; PMID: 18803656
  • Leonardi D, Oberdoerfer D, Fernandes MC, Meurer RT, Pereira-Filho GA, Cruz P, Vargas M, Chem RC, Camassola M, Nardi NB. Mesenchymal stem cells combined with an artificial dermal substitute improve repair in full-thickness skin wounds. Burns 2012; 38:1143 - 50; http://dx.doi.org/10.1016/j.burns.2012.07.028; PMID: 22998897
  • Cavallo C, Cuomo C, Fantini S, Ricci F, Tazzari PL, Lucarelli E, Donati D, Facchini A, Lisignoli G, Fornasari PM, et al. Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J Cell Biochem 2011; 112:1418 - 30; http://dx.doi.org/10.1002/jcb.23058; PMID: 21321995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.