1,941
Views
73
CrossRef citations to date
0
Altmetric
Organogenesis Forum

Microvascular rarefaction

The decline and fall of blood vessels

Pages 1-10 | Published online: 01 Feb 2010

References

  • Folkman J. Tumor angiogenesis. Adv Cancer Res 1985; 43:175 - 203
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6:389 - 395
  • Dvorak H. How tumors make bad blood vessels and stroma. Am J Pathol 2003; 162:1747 - 1757
  • Yancopoulos G, Davis S, Gale N, Rudge J, Wiegand S, Holash J. Vascular-specific growth factors and blood vessel formation. Nat 2000; 407:242 - 248
  • Carmeliet P, Jain R. Angiogenesis in cancer and other diseases. Nat 2000; 407:249 - 257
  • Augustin H, Koh G, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009; 10:165 - 177
  • Benest A, Augustin H. Tension in the vasculature. Nat Med 2009; 15:608 - 610
  • Folkow B. The Forth Volhard lecture: cardiovascular structural adaptation: its role in the initiation and maintenance of primary hypertension. Clin Sci Mol Med 1978; 4:3 - 22
  • Prewitt R, Chen I, Dowell R. Development of micro-vascular rarefaction in the spontaneously hypertensive rat. Am J Physiol 1982; 243:243 - 251
  • Prewitt R, Cardoso S, Wood W. Prevention of arteriolar rarefaction in the spontaneously hypertensive rat by exposure to simulated high altitude. J Hypertens 1986; 4:735 - 740
  • Hashimoto H, Prewitt R, Efaw C. Alterations in the microvasculature of one-kidney, one-clip hypertensive rats. Am J Physiol 1987; 253:933 - 940
  • Boegenhold M, Johnson M, Overbeck H. Pressure-independent arteriolar rarefaction in hypertension. Am J Physiol 1991; 261:83 - 87
  • Hansen-Smith F, Morris L, Green A, Lombard J. Rapid microvessel rarefaction with elevated salt intake and reduced renal mass. Circ Res 1996; 79:324 - 330
  • Rieder M, Roman R, Greene A. Hypertension 1997; 30:120 - 127
  • Papanek P, Rieder M, Lombard J, Greene A. Genderspecific protection from microvessel rarefaction in female hypertensive rats. Am J Hypertens 1998; 11:998 - 1005
  • Gobe G, Browning J, Howard T, Hogg N, Winterford C, Cross R. Apoptosis occurs in endothelial cells during hypertension-induced microvascular rarefaction. J Struct Biol 1997; 118:63 - 72
  • Nusz D, White D, Dai Q, Pippen A, Thompson M, Walton G, et al. Vasular rarefaction in peripheral skeletal muscle after experimental heart failure. Am J Physiol 2003; 285:1554 - 1562
  • Sladek T, Gerova M, Znojil V, Devat L. Morphometric characteristics of cardiac hypertrophy induced by long-term inhibition of NO synthase. Physiol Res 1996; 45:335 - 338
  • Kubis N, Richer C, Domergue V, Giudicelli J, Levy B. Role of microvascular rarefaction in the increased arterial pressure in mice lacking the endothelial nitric oxide synthase gene. J Hypertens 2002; 20:1581 - 1587
  • Okruhlicova L, Tribulova N, Weismann P, Sotnikova R. Ultrastructure and histochemistry of rat myocardial capillary endothelial cells in response to diabetes and hypertension. Cell Res 2005; 15:532 - 538
  • Tornig J, Amann K, Ritz E, Nichols C, Zeier M, Mall G. Arteriolar thickening, capillary rarefaction and interstitial fibrosis in the heart of rats with renal failure: the effects of ramipril, nifedipine and moxonidine. J Am Soc Nephrol 1996; 7:667 - 675
  • Sabri A, Samuel J, Marotte F, Poitevin P, Pappaport L, Levy B. Microvasculature in angiotensin II-dependent cardiac hypertrophy in the rat. Hypertension 1998; 32:371 - 375
  • Sokolova I, Manukhina E, Blinkov S, Koshelev V, Pinelis V, Rodionov I. Rarefaction of arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res 1985; 30:1 - 9
  • Sonntag W, Lynch C, Cooney P, Hutchins P. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-1. Endocrinol 1997; 138:3515 - 3520
  • Harper R, Moore M, Marr M, Watts L, Hutchins P. Arteriolar rarefaction in the conjunctiva of human essential hypertension. Microvasc Res 1978; 16:369 - 372
  • Funk R, Rohen J. Comparative morphological studies on blood vessels in eyes of normotensive and spontaneously hypertensive rats. Exp Eye Res 1985; 40:191 - 203
  • Keshet E. Preventing pathological regression of blood vessels. J Clin Invest 2003; 112:27 - 29
  • Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol 1979; 73:47 - 53
  • Hasan K, Manyonda I, Ng F, Singer D, Antonios T. Skin capillary density changes in normal pregnancy and preeclampsia. J Hypertens 2002; 20:2439 - 2443
  • Houben A, Beljaars J, Hofstra L, Kroon A, De Leeuw P. Microvascular abnormalities in chronic heart failure: a cross-sectional study. Microcirculation 2003; 10:471 - 478
  • Serne E, Gans R, ter Maaten J, Tangelder G, Donker A, Stehouwer C. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 2001; 38:238 - 242
  • Stewart J, Kohen A, Brouder D, Rahim F, Adler S, Garrick R, Goligorsky MS. Non-invasive interrogation of microvasculature for sigfns of endothelial dysfunction in patients with chronic renal failure. Am J Physiol Heart 2004; 287:2687 - 2696
  • Bohle A, Mackensen-Haen S, von Gise H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney. Am J Nephrol 1987; 7:421 - 433
  • Lee L, Meyer T, Pollock A, Lovett D. Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney. J Clin Invest 1995; 96:953 - 964
  • Kang D, Joly A, Mazali M, Johnson R. Impaired angiogenesis in the remnant kidney model. J Am Soc Nephrol 2001; 12:1448 - 1457
  • Kang D, Nakagawa T, Feng L, Johnson R. Nitric oxide modulates vascular disease in the remnant kidney model. Am J Pathol 2002; 161:239 - 248
  • Kang D, Kanellis J, Hugo C, Johnson R. Role of microvascular endothelium in progressive renal disease. J Am Soc Nephrol 2002; 13:806 - 816
  • Ohashi R, Kitamura H, Yamanaka N, Johnson R. Peritubular capillary injury during progression of experimental glomerulonephritis in rats. J Am Soc Nephrol 2000; 11:47 - 56
  • Ohashi R, Shimizu A, Masuda Y, Johnson R. Peritubular capillary regression during progression of experimental obstructive nephropathy. J Am Soc Nephrol 2002; 13:1795 - 1805
  • Gealikman O, Brodsky SV, Zhang F, Chander P, Friedli C, Nasjletti A, Goligorsky MS. Angiogenic incompetence and microvasculopathy in the Zucker diabetic fat rat are ameliorated with Ebselen treatment: endothelial dysfunction as a modifier of angiogenic response. Kidney Int 2004; 66:2337 - 2347
  • Namikoshi T, Satoh M, Horike H, Fujimoto S, Arakawa S, Sasaki T, Kashihara N. Implications of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy. Nephron 2006; 102:9 - 16
  • Vollmar B, Siegmund S, Richter S, Menger M. Microvascular consequences of Kuppfer cell modulation in rat liver fibrogenesis. J Pathol 1999; 189:85 - 91
  • Hudetz A. Percolation phenomenon: the effect of capillary network rarefaction. Microvasc Res 1993; 45:1 - 10
  • Greene A, Tonelato P, Lui J, Lombard J, Cowley A. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 1989; 256:126 - 131
  • Shih S-C, Ju M, Liu N, Smith L. Selective stimulation of VEGFR1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 2003; 112:50 - 57
  • Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9:653 - 660
  • O’Reilly M, Boehm T, Shing Y, Fukai N, Vasios G, Lane W, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277 - 285
  • Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanism of action. Exp Cell Res 2006; 312:594 - 607
  • Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell 2005; 16:3488 - 3500
  • Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Itmonen M, Lombardo C, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98:1024 - 1029
  • Bates D, Cui T, Doughty J, Winkler M, Sugino M, Shields J, et al. VEGF165b, an inhibitory splice variant of VEGF, is downregulated in renal cell carcinoma. Cancer Res 2002; 62:4123 - 4131
  • Perrin R, Konopatskaya O, Qiu Y, Harper S, Bates D, Churchill A. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of VEGF. Diabetologia 2005; 48:2422 - 2427
  • Noiri E, Peresleni T, Srivastava N, Weber P, Bahou W, Peunova N, Goligorsky MS. Nitric oxide is necessary for a switch from stationary to locomoting phenotype in epithelial cells. Am J Physiology 1996; 270:794 - 802
  • Noiri E, Hu Y, Bahou WF, Keese C, Giaever I, Goligorsky MS. Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 1997; 272:1747 - 1752
  • Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese C, et al. Podokinesis in endothelial cell migration: role of NO. Am J Physiol Cell 1998; 274:236 - 244
  • Yung Y, Chae J, Buehler M, Hunter C, Mooney D. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc Natl Acad Sci USA 2009; 106:15279 - 15284
  • Kilarski W, Samolov B, Petersson L, Kvanta A, Gerwins P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 2009; 15:657 - 664
  • Ausprunk D, Falterman K, Folkman J. The sequence of events in the regression of corneal capillaries. Lab Invest 1978; 38:284 - 294
  • Ito M, Yoshioka M. Regression of the hyaloids vessels and papillary membrane of the mouse. Anat Embryol (Berl) 1999; 200:403 - 411
  • Lobov I, Rao S, Carroll T, Vallance J, Ito M, Ondr J, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nat 2005; 437:417 - 421
  • Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski M. Generation and role of angiostatin in human platelets. Blood 2003; 102:3217 - 3223
  • VonTell D, Armulik A, Betscholtz C. Pericytes and vascular stability. Exp Cell Res 2006; 312:623 - 629
  • Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrosative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 2009; 15:1031 - 1038
  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk-1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408:92 - 96
  • DeRuiter M, Poelmann R, VanMunsteren J, Mironov V, Markwald R, Gittenberger-de Groot A. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 1997; 80:444 - 451
  • Frid M, Kale V, Stenmark K. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation. Circ Res 2002; 90:1189 - 1196
  • Ishizaki A, Hayashi H, Li A, Imamura T. Human umbilical vein endothelium-derived cells retain potential to differentiate into smooth muscle-like cells. J Biol Chem 2003; 278:1303 - 1309
  • Hillebrands J, Klatter F, van den Hurk B, Popa E, Nieuwenhuis P, Rozing J. Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest 2001; 107:1411 - 1422
  • Iwano M, Plieth D, Danoff T, Xue C, Okada H, Neilson E. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110:341 - 350
  • Kalluri R, Neilson E. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776 - 1784
  • Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opinion Cell Biol 2003; 15:740 - 746
  • Liu J. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanisms and therapeutic intervention. J Am Soc Nephrol 2004; 15:1 - 12
  • O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 2007; 292:285 - 294
  • Stossel A, Paliege A, Thelig F, Addabbo F, Patschan D, Goligorsky MS, Bachmann S. Indolent course of tubulointerstitial disease in a mouse model of subpressor, low-dose nitric oxide synthase inhibition. Am J Physiol Renal 2008; 295:717 - 725
  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 2007; 13:952 - 961
  • da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all postnatal organs and tissues. J Cell Sci 2006; 119:2204 - 2213
  • Chen J, Park H-C, Pelger E, Li H, Plotkin M, Goligorsky MS. Mesenchymal stem cells participate in vasculogenesis, angiogenesis and endothelial repair. Kidney Interntl 2008; 74:879 - 889
  • Plotkin MD, Goligorsky MS. Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Physiol Renal Physiol 2006; 291:902 - 912
  • Mitchell R. Graft vascular disease: immune response meets vascular wall. Annu Rev Pathol Mech Dis 2009; 4:19 - 47
  • Davis S, Yeung A, Meredith I, Charbonneau F, Ganz P. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circ 1996; 93:457 - 462
  • Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67:609 - 652
  • Tran PK, Tran-Lundmark K, Soininen R, Tryggvason K, Thyberg J, Hedin U. Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res 2004; 94:550 - 558
  • Pillarisetti S. Lipoprotein modulation of subendothelial heparan sulfate proteoglycans (perlecan) and atherogenicity. Trends Cardiovasc Med 2000; 10:60 - 65
  • Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 2003; 278:4238 - 4249
  • Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, et al. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 2005; 280:7080 - 7087
  • Oda O, Shinzato T, Ohbayashi K, Takai I, Kunimatsu M, Maeda K, et al. Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin Chim Acta 1996; 255:119 - 132
  • Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 2004; 166:97 - 109
  • Bix G, Castello R, Burrows M, Zoeller J, Weech M, Iozzo R, et al. Endorepellin in vivo: targeting tumor vasculature and retarding cancer growth and metabolism. J Natl Cancer Inst 2006; 98:1634 - 1646
  • O’Riordan E, Orlova TN, Mendelev N, Patschan D, Kemp R, Chander PN, et al. Urinary proteomic analysis of chronic allograft nephropathy. Proteomics—Clinical Applications 2008; 2:1025 - 1035
  • Addabbo F, Ratliff B, Park H-C, Kuo MC, Sodhi K, Zhang F, et al. Mitochondrial function and mass are early victims of endothelial dysfunction. Am J Pathol 2009; 174:34 - 43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.