2,831
Views
35
CrossRef citations to date
0
Altmetric
Review

Palatogenesis

Engineering, pathways and pathologies

, , , , &
Pages 242-254 | Received 01 Jul 2011, Accepted 31 Aug 2011, Published online: 01 Oct 2011

References

  • Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 2011; 12:167 - 178; PMID: 21331089; http://dx.doi.org/10.1038/nrg2933
  • Robin NH, Baty H, Franklin J, Guyton FC, Mann J, Woolley AL, et al. The multidisciplinary evaluation and management of cleft lip and palate. South Med J 2006; 99:1111 - 1120; PMID: 17100032; http://dx.doi.org/10.1097/01.smj.0000209093.78617.3a
  • Fraser FC. Thoughts on the etiology of clefts of the palate and lip. Acta Genet Stat Med 1955; 5:358 - 369; PMID: 13339079
  • Gritli-Linde A. The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37 - 138; PMID: 19186243; http://dx.doi.org/10.1016/S0070-2153(08)00602-9
  • Jiang R, Bush JO, Lidral AC. Development of the upper lip: morphogenetic and molecular mechanisms. Dev Dyn 2006; 235:1152 - 1166; PMID: 16292776; http://dx.doi.org/10.1002/dvdy.20646
  • Thaller SR, Bradley JP, Garri JI. Craniofacial Surgery 2008; New York, NY Informa Healthcare, Inc.
  • Berkowitz S. Stereophotogrammetric analysis of casts of normal and abnormal palates. Am J Orthod 1971; 60:1 - 18; PMID: 5281450; http://dx.doi.org/10.1016/0002-9416(71)90178-3
  • Sommerlad BC, Fenn C, Harland K, Sell D, Birch MJ, Dave R, et al. Submucous cleft palate: a grading system and review of 40 consecutive submucous cleft palate repairs. Cleft Palate Craniofac J 2004; 41:114 - 123; PMID: 14989694; http://dx.doi.org/10.1597/02-102
  • Thorne CH, Bartlett SP, Beasley R, Aston S, Gurtner GC, Spear SL. Grabb & Smith's Plastic Surgery 2007; Philadelpha, PA Lippincott Williams & Wilkins 6
  • Bardach J. Atlas of Craniofacial and Cleft Surgery: Cleft Lip and Palate 1999; Philadelphia Lippincott Raven 2
  • Noorchashm N, Dudas JR, Ford M, Gastman B, Deleyiannis FW, Vecchione L, et al. Conversion Furlow palatoplasty: salvage of speech after straight-line palatoplasty and “incomplete intravelar veloplasty”. Ann Plast Surg 2006; 56:505 - 510; PMID: 16641625; http://dx.doi.org/10.1097/01.sap.0000210154.72830.3d
  • Kriens OB. An anatomical approach to veloplasty. Plast Reconstr Surg 1969; 43:29 - 41; PMID: 5765081; http://dx.doi.org/10.1097/00006534-196901000-00006
  • Wardill WEM. The technique of operation for cleft palate. Br J Surg 2005; 25:117; http://dx.doi.org/10.1002/bjs.1800259715
  • Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130:4769 - 4784; PMID: 12952899; http://dx.doi.org/10.1242/dev.00721
  • Ding H, Wu X, Boström H, Kim I, Wong N, Tsoi B, et al. A specific requirement for PDGF-C in palate formation and PDGFRalpha signaling. Nat Genet 2004; 36:1111 - 1116; PMID: 15361870; http://dx.doi.org/10.1038/ng1415
  • Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11:3286 - 3305; PMID: 9407023; http://dx.doi.org/10.1101/gad.11.24.3286
  • Brugmann SA, Goodnough LH, Gregorieff A, Leucht P, ten Berge D, Fuerer C, et al. Wnt signaling mediates regional specification in the vertebrate face. Development 2007; 134:3283 - 3295; PMID: 17699607; http://dx.doi.org/10.1242/dev.005132
  • Basch ML, Bronner-Fraser M. Neural crest inducing signals. Adv Exp Med Biol 2006; 589:24 - 31; PMID: 17076273; http://dx.doi.org/10.1007/978-0-387-469546_2
  • Schmidt C, Patel K. Wnts and the neural crest. Anat Embryol (Berl) 2005; 209:349 - 355; PMID: 15891909; http://dx.doi.org/10.1007/s00429-005-0459-9
  • Oosterwegel M, van de Wetering M, Timmerman J, Kruisbeek A, Destree O, Meijlink F, et al. Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Development 1993; 118:439 - 448; PMID: 8223271
  • Wang J, Shackleford GM. Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 1996; 13:1537 - 1544; PMID: 8875992
  • Geetha-Loganathan P, Nimmagadda S, Antoni L, Fu K, Whiting CJ, Francis-West P, et al. Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn 2009; 238:1150 - 1165; PMID: 19334275; http://dx.doi.org/10.1002/dvdy.21934
  • Lan Y, Ryan RC, Zhang Z, Bullard SA, Bush JO, Maltby KM, et al. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Dev Dyn 2006; 235:1448 - 1454; PMID: 16496313; http://dx.doi.org/10.1002/dvdy.20723
  • Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L, et al. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 2009; 136:3161 - 3171; PMID: 19700620; http://dx.doi.org/10.1242/dev.037440
  • Juriloff DM, Harris MJ, Mah DG. The clf1 gene maps to a 2- to 3-cM region of distal mouse chromosome 11. Mamm Genome 1996; 7:789; PMID: 8854874; http://dx.doi.org/10.1007/s003359900298
  • Juriloff DM, Harris MJ, Brown CJ. Unravelling the complex genetics of cleft lip in the mouse model. Mamm Genome 2001; 12:426 - 435; PMID: 11353389; http://dx.doi.org/10.1007/s003350010284
  • Juriloff DM, Harris MJ, Dewell SL, Brown CJ, Mager DL, Gagnier L, et al. Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Res A Clin Mol Teratol 2005; 73:103 - 113; PMID: 15690355; http://dx.doi.org/10.1002/bdra.20106
  • Chiquet BT, Blanton SH, Burt A, Ma D, Stal S, Mulliken JB, et al. Variation in WNT genes is associated with non-syndromic cleft lip with or without cleft palate. Hum Mol Genet 2008; 17:2212 - 2218; PMID: 18413325; http://dx.doi.org/10.1093/hmg/ddn121
  • Juriloff DM, Harris MJ, McMahon AP, Carroll TJ, Lidral AC. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol 2006; 76:574 - 579; PMID: 16998816; http://dx.doi.org/10.1002/bdra.20302
  • Behr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol 2010; 344:922 - 940; PMID: 20547147; http://dx.doi.org/10.1016/j.ydbio.2010.06.009
  • St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13:2072 - 2086; PMID: 10465785; http://dx.doi.org/10.1101/gad.13.16.2072
  • Liu KJ, Arron JR, Stankunas K, Crabtree GR, Longaker MT. Chemical rescue of cleft palate and midline defects in conditional GSK-3beta mice. Nature 2007; 446:79 - 82; PMID: 17293880; http://dx.doi.org/10.1038/nature05557
  • Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 2002; 129:4135 - 4146; PMID: 12163415
  • Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6:348 - 356; PMID: 7914451; http://dx.doi.org/10.1038/ng0494-348
  • Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995; 11:415 - 421; PMID: 7493022; http://dx.doi.org/10.1038/ng1295-415
  • Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, et al. Transforming growth factor-beta3 is required for secondary palate fusion. Nat Genet 1995; 11:409 - 414; PMID: 7493021; http://dx.doi.org/10.1038/ng1295-409
  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF-beta1, TGF-beta2 and TGF-beta3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 1991; 115:1091 - 1105; PMID: 1955457; http://dx.doi.org/10.1083/jcb.115.4.1091
  • Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-beta3 (but not TGF-beta1 or TGF-beta2) activity prevents normal mouse embryonic palate fusion. Int J Dev Biol 1995; 39:345 - 355; PMID: 7669547
  • Moreno LM, Mansilla MA, Bullard SA, Cooper ME, Busch TD, Machida J, et al. FOXE1 association with both isolated cleft lip with or without cleft palate and isolated cleft palate. Hum Mol Genet 2009; 18:4879 - 4896; PMID: 19779022; http://dx.doi.org/10.1093/hmg/ddp444
  • Dathan N, Parlato R, Rosica A, De Felice M, Di Lauro R. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate and hair. Dev Dyn 2002; 224:450 - 456; PMID: 12203737; http://dx.doi.org/10.1002/dvdy.10118
  • Trueba SS, Augé J, Mattei G, Etchevers H, Martinovic J, Czernichow P, et al. PAX8, TITF1 and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab 2005; 90:455 - 462; PMID: 15494458; http://dx.doi.org/10.1210/jc.2004-1358
  • De Felice M, Ovitt C, Biffali E, Rodriguez-Mallon A, Arra C, Anastassiadis K, et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 1998; 19:395 - 398; PMID: 9697704; http://dx.doi.org/10.1038/1289
  • Richardson RJ, Dixon J, Malhotra S, Hardman MJ, Knowles L, Boot-Handford RP, et al. Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 2006; 38:1329 - 1334; PMID: 17041603; http://dx.doi.org/10.1038/ng1894
  • Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 2006; 38:1335 - 1340; PMID: 17041601; http://dx.doi.org/10.1038/ng1903
  • Little HJ, Rorick NK, Su LI, Baldock C, Malhotra S, Jowitt T, et al. Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6. Hum Mol Genet 2009; 18:535 - 545; PMID: 19036739; http://dx.doi.org/10.1093/hmg/ddn381
  • Blanton SH, Cortez A, Stal S, Mulliken JB, Finnell RH, Hecht JT. Variation in IRF6 contributes to nonsyndromic cleft lip and palate. Am J Med Genet 2005; 137:259 - 262; PMID: 16096995; http://dx.doi.org/10.1002/ajmg.a.30887
  • Hallonet M, Hollemann T, Pieler T, Gruss P. Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 1999; 13:3106 - 3114; PMID: 10601036; http://dx.doi.org/10.1101/gad.13.23.3106
  • Erfani S, Maldonado TS, Crisera CA, Warren SM, Lee S, Longaker MT. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting. Plast Reconstr Surg 2001; 108:403 - 410; PMID: 11496182; http://dx.doi.org/10.1097/00006534-200108000-00019
  • Levi B, James AW, Nelson ER, Brugmann SA, Sorkin M, Manu A, et al. Role of Indian hedgehog signaling in palatal osteogenesis. Plast Reconstr Surg 2011; 127:1182 - 1190; PMID: 21364421; http://dx.doi.org/10.1097/PRS.0b013e3182043a07
  • Langenbeck B. Operation on congenital total cleft of the hard palate by a new method 1977; Baltimore Williams & Wilkins
  • Bardach J. Two-flap palatoplasty: Bardach's technique. Oper Tech Plast Reconstr Surg 1995; 2:211 - 214; http://dx.doi.org/10.1016/S1071-0949(06)80034-X
  • Furlow LT Jr. Cleft palate repair by double opposing Z-plasty. Plast Reconstr Surg 1986; 78:724 - 738; PMID: 3786527; http://dx.doi.org/10.1097/00006534-198678060-00002
  • Kirschner RE, Wang P, Jawad AF, Duran M, Cohen M, Solot C, et al. Cleft-palate repair by modified Furlow double-opposing Z-plasty: the Children's Hospital of Philadelphia experience. Plast Reconstr Surg 1999; 104:1998 - 2010; PMID: 11149762; http://dx.doi.org/10.1097/00006534-199912000-00009
  • Gupta R, Kumar S, Murarka AK, Mowar A. Some modifications of the furlow palatoplasty in wide clefts-a preliminary report. Cleft Palate Craniofac J 2011; 48:9 - 19; PMID: 21265642; http://dx.doi.org/10.1597/09-051
  • LaRossa D, Jackson OH, Kirschner RE, Low DW, Solot CB, Cohen MA, et al. The Children's Hospital of Philadelphia modification of the Furlow double-opposing z-palatoplasty: long-term speech and growth results. Clin Plast Surg 2004; 31:243 - 249; PMID: 15145666; http://dx.doi.org/10.1016/S0094-1298(03)00141-X
  • Amaratunga NA. Occurrence of oronasal fistulas in operated cleft palate patients. J Oral Maxillofac Surg 1988; 46:834 - 838; PMID: 3171742; http://dx.doi.org/10.1016/0278-2391(88)90044-4
  • Cohen SR, Kalinowski J, LaRossa D, Randall P. Cleft palate fistulas: a multivariate statistical analysis of prevalence, etiology and surgical management. Plast Reconstr Surg 1991; 87:1041 - 1047; PMID: 2034725; http://dx.doi.org/10.1097/00006534-199106000-00005
  • Emory RE Jr, Clay RP, Bite U, Jackson IT. Fistula formation and repair after palatal closure: an institutional perspective. Plast Reconstr Surg 1997; 99:1535 - 1538; PMID: 9145120; http://dx.doi.org/10.1097/00006534-199705000-00010
  • Landheer JA, Breugem CC, van der Molen AB. Fistula incidence and predictors of fistula occurrence after cleft palate repair: two-stage closure versus one-stage closure. Cleft Palate Craniofac J 2010; 47:623 - 630; PMID: 21039279; http://dx.doi.org/10.1597/09-069
  • Lu Y, Shi B, Zheng Q, Hu Q, Wang Z. Incidence of palatal fistula after palatoplasty with levator veli palatini retropositioning according to Sommerlad. Br J Oral Maxillofac Surg 2010; 48:637 - 640; PMID: 19945200; http://dx.doi.org/10.1016/j.bjoms.2009.10.018
  • Hai HK. Repair of palatal defects with unlined buccal fat pad grafts. Oral Surg Oral Med Oral Pathol 1988; 65:523 - 525; PMID: 3163783; http://dx.doi.org/10.1016/0030-4220(88)90133-8
  • Hudson JW, Anderson JG, Russell RM Jr, Anderson N, Chambers K. Use of pedicled fat pad graft as an adjunct in the reconstruction of palatal cleft defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 80:24 - 27; PMID: 7552856; http://dx.doi.org/10.1016/S1079-2104(95)80011-5
  • Levi B, Kasten SJ, Buchman SR. Utilization of the buccal fat pad flap for congenital cleft palate repair. Plast Reconstr Surg 2009; 123:1018 - 1021; PMID: 19319069; http://dx.doi.org/10.1097/PRS.0b013e318199f80f
  • Fujimura N, Nagura H, Enomoto S. Grafting of the buccal fat pad into palatal defects. J Craniomaxillofac Surg 1990; 18:219 - 222; PMID: 2167326; http://dx.doi.org/10.1016/S1010-5182(05)80415-9
  • Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW. Skin and oral mucosa equivalents: construction and performance. Orthod Craniofac Res 2010; 13:11 - 20; PMID: 20078790; http://dx.doi.org/10.1111/j.16016343.2009.01475.x
  • Steele MH, Seagle MB. Palatal fistula repair using acellular dermal matrix: the University of Florida experience. Ann Plast Surg 2006; 56:50 - 53; PMID: 16374096; http://dx.doi.org/10.1097/01.sap.0000185469.80256.9e
  • Cole P, Horn TW, Thaller S. The use of decellularized dermal grafting (AlloDerm) in persistent oro-nasal fistulas after tertiary cleft palate repair. J Craniofac Surg 2006; 17:636 - 641; PMID: 16877906; http://dx.doi.org/10.1097/00001665-200607000-00005
  • Clark JM, Saffold SH, Israel JM. Decellularized dermal grafting in cleft palate repair. Arch Facial Plast Surg 2003; 5:40 - 44; PMID: 12533137; http://dx.doi.org/10.1001/archfaci.5.1.40
  • Panetta NJ, Gupta DM, Slater BJ, Kwan MD, Liu KJ, Longaker MT. Tissue engineering in cleft palate and other congenital malformations. Pediatr Res 2008; 63:545 - 551; PMID: 18427300; http://dx.doi.org/10.1203/PDR.0b013e31816a743e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.