1,021
Views
18
CrossRef citations to date
0
Altmetric
Review

Planar cell polarity signaling in craniofacial development

, &
Pages 255-259 | Received 15 Sep 2011, Accepted 17 Nov 2011, Published online: 01 Oct 2011

References

  • Northcutt RG, Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 1983; 58:1 - 28; PMID: 6346380; http://dx.doi.org/10.1086/413055
  • Schilling TF. Genetic analysis of craniofacial development in the vertebrate embryo. Bioessays 1997; 19:459 - 468; PMID: 9204763; http://dx.doi.org/10.1002/bies.950190605
  • Wansleeben C, Meijlink F. The planar cell polarity pathway in vertebrate development. Dev Dyn 2011; 240:616 - 626; PMID: 21305650; http://dx.doi.org/10.1002/dvdy.22564
  • Bekman E, Henrique D. Embryonic expression of three mouse genes with homology to the Drosophila melanogaster prickle gene. Mech Dev 2002; 119:77 - 81; PMID: 14516664; http://dx.doi.org/10.1016/S09254773(03)00095-9
  • Darken RS, Scola AM, Rakeman AS, Das G, Mlodzik M, Wilson PA. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 2002; 21:976 - 985; PMID: 11867525; http://dx.doi.org/10.1093/emboj/21.5.976
  • Goto T, Keller R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 2002; 247:165 - 181; PMID: 12074560; http://dx.doi.org/10.1006/dbio.2002.0673
  • Nakaya MA, Habas R, Biris K, Dunty WC Jr, Kato Y, He X, et al. Identification and comparative expression analyses of Daam genes in mouse and Xenopus. Gene Expr Patterns 2004; 5:97 - 105; PMID: 15533824; http://dx.doi.org/10.1016/j.modgep.2004.06.001
  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008; 456:957 - 961; PMID: 19078960; http://dx.doi.org/10.1038/nature07441
  • De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. Essential role of non-canonical Wnt signalling in neural crest migration. Development 2005; 132:2587 - 2597; PMID: 15857909; http://dx.doi.org/10.1242/dev.01857
  • Clay MR, Halloran MC. Regulation of cell adhesions and motility during initiation of neural crest migration. Curr Opin Neurobiol 2011; 21:17 - 22; PMID: 20970990; http://dx.doi.org/10.1016/j.conb.2010.09.013
  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, et al. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 2008; 135:1771 - 1780; PMID: 18403410; http://dx.doi.org/10.1242/dev.017350
  • Shnitsar I, Borchers A. PTK7 recruits dsh to regulate neural crest migration. Development 2008; 135:4015 - 4024; PMID: 19004858; http://dx.doi.org/10.1242/dev.023556
  • Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 2001; 1:251 - 264; PMID: 11702784; http://dx.doi.org/10.1016/S1534-5807(01)00005-3
  • LeClair EE, Mui SR, Huang A, Topczewska JM, Topczewski J. Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants. Dev Dyn 2009; 238:2550 - 2563; PMID: 19777561; http://dx.doi.org/10.1002/dvdy.22086
  • Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 2010; 239:327 - 337; PMID: 19918918; http://dx.doi.org/10.1002/dvdy.22156
  • Hartmann C. Skeletal development—Wnts are in control. Mol Cells 2007; 24:177 - 184; PMID: 17978569
  • Geetha-Loganathan P, Nimmagadda S, Antoni L, Fu K, Whiting CJ, Francis-West P, et al. Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn 2009; 238:1150 - 1165; PMID: 19334275; http://dx.doi.org/10.1002/dvdy.21934
  • Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns 2009; 9:215 - 223; PMID: 19185060; http://dx.doi.org/10.1016/j.gep.2008.12.009
  • Yamaguchi TP, Bradley A, McMahon AP, Jones SA. Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126:1211 - 1223; PMID: 10021340
  • Dale RM, Sisson BE, Topczewski J. The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 2009; 6:9 - 14; PMID: 19250029; http://dx.doi.org/10.1089/zeb.2008.0563
  • Piotrowski T, Schilling TF, Brand M, Jiang YJ, Heisenberg CP, Beuchle D, et al. Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 1996; 123:345 - 356; PMID: 9007254
  • Ryu JH, Chun JS. Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J Biol Chem 2006; 281:22039 - 22047; PMID: 16754689; http://dx.doi.org/10.1074/jbc.M601804200
  • Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 2003; 130:1003 - 1015; PMID: 12538525; http://dx.doi.org/10.1242/dev.00324
  • Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 2011; 20:163 - 176; PMID: 21316585; http://dx.doi.org/10.1016/j.devcel.2011.01.001
  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 2003; 8:645 - 654; PMID: 12839624; http://dx.doi.org/10.1046/j.1365-2443.2003.00662.x
  • Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice and humans. J Recept Signal Transduct Res 2003; 23:1 - 15; PMID: 12680586; http://dx.doi.org/10.1081/RRS-120018757
  • Lin M, Li L, Liu C, Liu H, He F, Yan F, et al. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn 2011; 240:432 - 440; PMID: 21246660; http://dx.doi.org/10.1002/dvdy.22550
  • DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 2000; 24:271 - 274; PMID: 10700181; http://dx.doi.org/10.1038/73488
  • Schwabe GC, Trepczik B, Suring K, Brieske N, Tucker AS, Sharpe PT, et al. Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev Dyn 2004; 229:400 - 410; PMID: 14745966; http://dx.doi.org/10.1002/dvdy.10466
  • Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 2000; 5:71 - 78; PMID: 10651906; http://dx.doi.org/10.1046/j.1365-2443.2000.00300.x
  • van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 2000; 25:423 - 426; PMID: 10932187; http://dx.doi.org/10.1038/78113
  • Wang B, Sinha T, Jiao K, Serra R, Wang J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum Mol Genet 2011; 20:271 - 285; PMID: 20962035; http://dx.doi.org/10.1093/hmg/ddq462
  • Robinow M, Silverman FN, Smith HD. A newly recognized dwarfing syndrome. Am J Dis Child 1969; 117:645 - 651; PMID: 5771504
  • Afzal AR, Jeffery S. One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum Mutat 2003; 22:1 - 11; PMID: 12815588; http://dx.doi.org/10.1002/humu.10233
  • Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet 2000; 24:275 - 278; PMID: 10700182; http://dx.doi.org/10.1038/73495
  • Fico A, Maina F, Dono R. Fine-tuning of cell signaling by glypicans. Cell Mol Life Sci 2011; 68:923 - 929; PMID: 18087675; http://dx.doi.org/10.1007/s00018-007-7471-6
  • Filmus J, Capurro M, Rast J. Glypicans. Genome Biol 2008; 9:224; PMID: 18505598; http://dx.doi.org/10.1186/gb-2008-9-5-224
  • Solnica-Krezel L, Stemple DL, Mountcastle-Shah E, Rangini Z, Neuhauss SC, Malicki J, et al. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 1996; 123:67 - 80; PMID: 9007230
  • Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, et al. Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 2008; 4:1000136; PMID: 18654627; http://dx.doi.org/10.1371/journal.pgen.1000136
  • Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 1995; 11:137 - 143; PMID: 7550340; http://dx.doi.org/10.1038/ng1095-137
  • Wuyts W, Van Hul W, Wauters J, Nemtsova M, Reyniers E, Van Hul EV, et al. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet 1996; 5:1547 - 1557; PMID: 8894688; http://dx.doi.org/10.1093/hmg/5.10.1547
  • Zak BM, Crawford BE, Esko JD. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 2002; 1573:346 - 355; PMID: 12417417; http://dx.doi.org/10.1016/S0304-4165(02)00402-6
  • Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 2004; 6:801 - 813; PMID: 15177029; http://dx.doi.org/10.1016/j.devcel.2004.05.009
  • Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 2004; 7:525 - 534; PMID: 15469841; http://dx.doi.org/10.1016/j.devcel.2004.07.019
  • Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell 2008; 19:2588 - 2596; PMID: 18400942; http://dx.doi.org/10.1091/mbc.E08-02-0187
  • Ohkawara B, Glinka A, Niehrs C. Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev Cell 2011; 20:303 - 314; PMID: 21397842; http://dx.doi.org/10.1016/j.devcel.2011.01.006
  • Lang MR, Lapierre LA, Frotscher M, Goldenring JR, Knapik EW. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat Genet 2006; 38:1198 - 1203; PMID: 16980978; http://dx.doi.org/10.1038/ng1880
  • Ohisa S, Inohaya K, Takano Y, Kudo A. sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 2010; 342:85 - 95; PMID: 20346938; http://dx.doi.org/10.1016/j.ydbio.2010.03.016
  • Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS ONE 2010; 5:10367; PMID: 20442775; http://dx.doi.org/10.1371/journal.pone.0010367
  • Hicke L, Schekman R. Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J 1989; 8:1677 - 1684; PMID: 2670558
  • Yoshihisa T, Barlowe C, Schekman R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 1993; 259:1466 - 1468; PMID: 8451644; http://dx.doi.org/10.1126/science.8451644
  • Wendeler MW, Paccaud JP, Hauri HP. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep 2007; 8:258 - 264; PMID: 17255961; http://dx.doi.org/10.1038/sj.embor.7400893
  • Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol 2010; 12:41 - 46; PMID: 19966784; http://dx.doi.org/10.1038/ncb2002
  • Wansleeben C, Feitsma H, Montcouquiol M, Kroon C, Cuppen E, Meijlink F. Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b. Development 2010; 137:1067 - 1073; PMID: 20215345; http://dx.doi.org/10.1242/dev.041434
  • Boyadjiev SA, Justice CM, Eyaid W, McKusick VA, Lachman RS, Chowdry AB, et al. A novel dysmorphic syndrome with open calvarial sutures and sutural cataracts maps to chromosome 14q13-q21. Hum Genet 2003; 113:1 - 9; PMID: 12677423; http://dx.doi.org/10.1007/s00439-003-0932-6
  • Greene RM, Pisano MM. Palate morphogenesis: Current understanding and future directions. Birth Defects Res C Embryo Today 2010; 90:133 - 154; PMID: 20544696; http://dx.doi.org/10.1002/bdrc.20180
  • Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet 2004; 74:558 - 563; PMID: 14872406; http://dx.doi.org/10.1086/382196
  • Juriloff DM, Harris MJ, McMahon AP, Carroll TJ, Lidral AC. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol 2006; 76:574 - 579; PMID: 16998816; http://dx.doi.org/10.1002/bdra.20302
  • Lee JM, Kim JY, Cho KW, Lee MJ, Cho SW, Kwak S, et al. Wnt11/Fgfr1b cross-talk modulates the fate of cells in palate development. Dev Biol 2008; 314:341 - 350; PMID: 18191119; http://dx.doi.org/10.1016/j.ydbio.2007.11.033
  • He F, Xiong W, Yu X, Espinoza-Lewis R, Liu C, Gu S, et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 2008; 135:3871 - 3879; PMID: 18948417; http://dx.doi.org/10.1242/dev.025767
  • Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137:3707 - 3717; PMID: 20940229; http://dx.doi.org/10.1242/dev.052001
  • Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001; 28:251 - 255; PMID: 11431695; http://dx.doi.org/10.1038/90081
  • Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423:173 - 177; PMID: 12724779; http://dx.doi.org/10.1038/nature01618
  • Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10:2593 - 2601; PMID: 11709546; http://dx.doi.org/10.1093/hmg/10.22.2593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.