1,116
Views
60
CrossRef citations to date
0
Altmetric
Mini Review

Computational Simulations of the Early Steps of Protein Aggregation

Pages 3-8 | Received 12 Jan 2007, Accepted 05 Feb 2007, Published online: 01 Mar 2007

References

  • Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol 1998; 7:447 - 453
  • Gejyo F, Homma N, Suzuki Y, Arakawa M. Serum levels of beta 2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. New Engl J Med 1986; 314:585 - 586
  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB. Synthetic mammalian prions. Science 2004; 305:673 - 676
  • Hou L, Shao H, Zhang Y, Li H, Menon NK, Neuhaus EB, Brewer JM, Byeon IJ, Ray DG, Vitek MP, Iwashita T, Makula RA, Przybyla AB, Zagorski MG. Solution NMR studies of the Abeta(1–40) and Abeta(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 2004; 126:1992 - 2005
  • Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 2000; 97:145 - 150
  • Sunde M, Serpell L, Bartlam M, Fraser P, Pepys M, Blake C. Common core structure of amyloid fibrils by synchrotron x-ray diffraction. J Mol Biol 1997; 273:729 - 739
  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005; 435:773 - 778
  • Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. Biochemistry 2006; 45:498 - 512
  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R. 3D structure of Alzheimer's amyloid-beta(1–42) fibrils. Proc Natl Acad Sci USA 2005; 102:17342 - 17347
  • Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR. Proc Natl Acad Sci USA 2006; 103:16248 - 16253
  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416:483 - 484
  • Lesne S, Teng Koh M, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallaher M, Ashe KH. A specific amyloid-β protein assembly in the brain impairs memory. Nature 2006; 440:352 - 357
  • Cohen F, Kelly J. Therapeutic approaches to protein-misfolding diseases. Nature 2003; 426:905 - 909
  • Dobson C. Protein folding and misfolding. Nature 2003; 426:884 - 890
  • Chiti F, Dobson C. Protein misfolding, functional amyloid, and human disease. Ann Rev Biochem 2006; 75:333 - 366
  • Hardy J, Selkoe DJ. Science 2002; 297:353 - 356
  • Bitan G, Vollers SS, Teplow DB. Elucidation of primary structure elements controlling early amyloid-b protein oligomerisation. J Biol Chem 2003; 278:34882 - 34889
  • Mastrangelo I, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith SO. High-resolution atomic force microscopy of soluble abeta42 oligomers. J Mol Biol 2006; 358:106 - 109
  • Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 2001; 312:1103 - 1119
  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. Amyloid beta-protein fibrillogenesis: Detection of a protofibrillar intermediate. J Biol Chem 1997; 272:22364 - 22372
  • Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 2006; 66:S74 - S78
  • Santini S, Wei GH, Mousseau N, Derreumaux P. Pathway complexity of Alzheimer's beta-amyloid Abeta16–22 peptide assembly. Structure 2004; 12:1245 - 1255
  • Santini S, Mousseau N, Derreumaux P. In silico assembly of Alzheimer's Abeta16–22 peptide into beta-sheets. J Am Chem Soc 2004; 126:11509 - 11516
  • Petty SA, Decatur SM. Experimental evidence for the reorganization of beta-strands within aggregates of the Abeta(16–22) peptide. J Am Chem Soc 2005; 127:13488 - 13489
  • Ma B, Nussinov R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr Opin Chem Biol 2006; 10:445 - 452
  • Hall CK, Wagoner VA. Computational approaches to fibril structure and formation. Methods Enzymol 2006; 412:338 - 365
  • Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol 2006; 10:437 - 444
  • Ma B, Nussinov R. Molecular dynamics simulations of alanine rich β-sheet oligomers: Insight into amyloid formation. Protein Sci 2002; 11:2335 - 2350
  • Zanuy D, Nussinov R. The sequence dependence of fiber organization: A comparative molecular dynamics study of the islet amyloid polypeptide segments 22–27 and 22–29. J Mol Biol 2003; 329:565 - 584
  • Wu C, Lei H, Duan Y. Elongation of ordered peptide aggregate of an amyloidogenic hexapeptide NFGAIL observed in molecular dynamics simulations with explicit solvent. J Am Chem Soc 2005; 127:13530 - 13537
  • Lopez de la Paz M, de Mori GM, Serrano L, Colombo G. Sequence dependence of amyloid fibril formation: Insights from molecular dynamics simulations. J Mol Biol 2005; 349:583 - 596
  • Colombo G, Daidone I, Gazit E, Amadei A, Di Nola A. Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Proteins 2005; 59:519 - 527
  • Rohrig UF, Laio A, Tantalo N, Parrinello M, Petronzio R. Stability and structure of oligomers of the Alzheimer peptide Aβ16–22: From the dimer to the 32-mer. Biophys J 2006; 91:3217 - 3229
  • Buchete NV, Tycko R, Hummer G. Molecular dynamics simulations of Alzheimer's beta-amyloid protofilaments. J Mol Biol 2005; 353:804 - 821
  • Esposito L, Pedone C, Vitagliano L. Molecular dynamics analyses of cross-beta-spine steric zipper models: beta-sheet twisting and aggregation. Proc Natl Acad Sci USA 2006; 103:11533 - 11538
  • Massi F, Straub JE. Probing the origins of increased activity of the E22Q “Dutch” mutant Alzheimer's beta-amyloid peptide. Biophys J 2001; 81:697 - 709
  • Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H. Conformational transition of amyloid beta-peptide. Proc Natl Acad Sci USA 2005; 102:5403 - 5407
  • Han W, Wu YD. A strand-loop-strand structure is a possible intermediate in fibril elongation: Long time simulations of amyloid-beta peptide (10–35). J Am Chem Soc 2005; 127:15408 - 15416
  • Flock D, Colacino S, Colombo G, Di Nola A. Misfolding of the amyloid β-protein: A molecular dynamics study. Proteins 2006; 62:183 - 192
  • Tarus B, Straub JE, Thirumalai D. Probing the initial stage of aggregation of the Abeta(10–35)-protein: Assessing the propensity for peptide dimerization. J Mol Biol 2005; 345:1141 - 1156
  • Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D. Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proc Natl Acad Sci USA 2007; Jan 2 104:111 - 116
  • Swendsen RH, Wang JS. Replica monte carlo simulation of spin-glasses. Phys Rev Letts 1986; 57:2607 - 2609
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynmaics method for protein folding. Chem Phys Lett 1999; 314:141 - 151
  • Gnanakaran S, Nussinov R, Garcia AE. Atomic-level description of amyloid beta-dimer formation. J Am Chem Soc 2006; 128:2158 - 2159
  • Baumketner A, Bernstein SL, Wyttenbach T, Bitan G, Teplow DB, Bowers MT, Shea JE. Amyloid beta-protein monomer structure: A computational and experimental study. Protein Sci 2006; 15:420 - 428
  • Wei GH, Shea JE. Solvent effects on the structure of alzheimer's amyloid-β(25–35) peptide. Biophysical J 2006; 91:1638 - 1647
  • Nishino M, Sugita Y, Yoda T, Okamoto Y. Structures of a peptide fragment of beta2-microglobulin studied by replica-exchange molecular dynamics simulations—Towards the understanding of the mechanism of amyloid formation. FEBS Lett 2005; 579:5425 - 5429
  • Tsai HH, Reches M, Tsai CJ, Gunasekaran K, Gazit E, Nussinov R. Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proc Natl Acad Sci USA 2005; 102:8174 - 8179
  • Gsponer J, Haberthur U, Caflisch A. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proc Natl Acad Sci USA 2003; 100:5154 - 5159
  • Jang S, Shin S. Amyloid beta-peptide oligomerization in silico: Dimer and trimer. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 2006; 110:1955 - 1958
  • Cecchini M, Rao F, Seeber M, Caflisch A. Replica exchange molecular dynamics simulations of amyloid peptide aggregation. J Chem Phys 2004; 121:10748 - 10756
  • Derreumaux P, Mousseau N. Coarse-grained protein molecular dynamics simulations. J Chem Phys 2007; 126:025101 - 025106
  • Paci E, Gsponer J, Salvatella X, Vendruscolo M. Molecular dynamics studies of the process of amyloid aggregation of peptide fragments of transthyretin. J Mol Biol 2004; 340:555 - 569
  • Zagrovic B, Pande V. Solvent viscosity dependence of the folding rate of a small protein: Distributed computing study. J Comput Chem 2003; 24:1432 - 1436
  • Malek R, Mousseau N. Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique. Phys Rev E 2000; 62:7723 - 7728
  • Wei GH, Mousseau N, Derreumaux P. Exploring the energy landscape of proteins: A characterization of the activation-relaxation technique. J Chem Phys 2002; 117:11379 - 11387
  • Derreumaux P. From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. J Chem Phys 1999; 111:2301 - 2310
  • Derreumaux P. Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations. Phys Rev Lett 2000; 85:206 - 209
  • Chen W, Mousseau N, Derreumaux P. Families of structures for the Alzheimer's fragment Aβ(21–30) in solution by computer simulations. J Chem Phys 2006; 125:1 - 8
  • Wei GH, Mousseau N, Derreumaux P. Sampling the self-assembly pathways of KFFE hexamers. Biophys J 2004; 87:3648 - 3656
  • Wei G, Mousseau N, Derreumaux P. Assembly dynamics of KFFE octamers. J Phys Condensed Matter 2004; 16:5047 - 5054
  • Boucher G, Mousseau N, Derreumaux P. Aggregating the amyloid Abeta(11–25) peptide into a four beta-sheet structure. Proteins 2006; 65:877 - 888
  • Melquiond A, Boucher G, Mousseau N, Derreumaux P. Following the aggregation of amyloid-forming peptides by computer simulations. J Chem Phys 2005; 122:174904
  • Melquiond A, Mousseau N, Derreumaux P. Structures of soluble amyloid oligomers from computer simulations. Proteins 2006; 65:180 - 191
  • Mousseau N, Derreumaux P. Exploring the early steps of amyloid peptide aggregation. Acc Chem Res 2005; 38:885 - 891
  • Melquiond A, Gelly JC, Mousseau N, Derreumaux P. Probing amyloid-fibril formation of the NFGAIL peptide by computer simulations. J Chem Phys 2007; 126:25101 - 25106
  • Wei G, Derreumaux P, Mousseau N. Sampling the complex energy landscape of a simple beta-hairpin. J Chem Phys 2003; 119:6403 - 6406
  • Favrin G, Irback A, Mohanty S. Oligomerization of amyloid Abeta16–22 peptides using hydrogen bonds and hydrophobicity forces. Biophys J 2004; 87:3657 - 3664
  • Nguyen HD, Hall CK. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 2004; 101:16180 - 16185
  • Ding F, LaRocque JJ, Dokholyan NV. Direct observation of protein folding, aggregation, and a prion-like conformational conversion. J Biol Chem 2005; 280:40235 - 40240
  • Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE. In silico study of amyloid beta-protein folding and oligomerization. Proc Natl Acad Sci USA 2004; 101:17345 - 17350
  • Garzon-Rodriguez W, Sepulveda-Becerra M, Milton S, Glabe CG. Soluble amyloid Aβ-(1–40) exists as a stable dimer at low concentrations. J Biol Chem 1997; 272:21037 - 21044
  • Huang T, Yang D, Plaskos N, Go S, Yip C, Fraser P, Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol 2000; 297:73 - 87
  • Harrison PM, Chan HS, Prusiner SB, Cohen FE. Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Sci 2001; 10:819 - 835
  • Dima RI, Thirumalai D. Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics. Protein Sci 2002; 11:1036 - 1049
  • Cellmer T, Bratko D, Prausnitz JM, Blanch H. Protein-folding landscapes in multichain systems. Proc Natl Acad Sci USA 2005; 102:11692 - 11697
  • Hwang W, Zhang S, Kamm RD, Karplus M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc Natl Acad Sci USA 2004; 101:12916 - 12921
  • Lei H, Wu C, Wang Z, Duan Y. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidgenic heptapeptide from human beta2-microglobulin: Implication to the protofibril structure. J Mol Biol 2006; 356:1049 - 1063
  • Dong X, Derreumaux P, Mousseau N. J Chem Phys In preparation
  • Berendsen HJC, Postma JPM, Di Nola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81:3684 - 3690
  • Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335:247 - 260
  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000; 289:1317 - 1321
  • Lashuel HA, Lansbury PT. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?. Q Rev Biophys 2006; 39:167 - 201
  • Song W, Wei GH, Mousseau N, Derreumaux P. Free Energy landscapes of four amyloid-forming peptides. J Am Chem Soc Submission
  • Song W, Derreumaux P, Mousseau N, Wei GH. In preparation
  • Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: Amyloid growth occurs by monomer addition. PLoS Biol 2004; 2:1582 - 1590
  • Deng NJ, Yan L, Singh D, Cieplak P. Molecular basis for the Cu2+ binding-induced destabilization of beta2-microglobulin revealed by molecular dynamics simulation. Biophys J 2006; 90:3865 - 3879
  • Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, Quartermain D, Wisniewski T. Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer's disease. Proc Natl Acad Sci USA 2006; 103:18787 - 18792
  • Klimov DK, Thirumalai D. Dissecting the assembly of Abeta(16–22) amyloid peptides into antiparallel beta sheets. Structure 2003; 11:295 - 307
  • Daggett V. Alpha-sheet: The toxic conformer in amyloid diseases?. Acc Chem Res 2006; 39:594 - 602
  • Marchut AJ, Hall CK. Spontaneous formation of annular structures observed in molecular dynamics simulations of polyglutamine peptides. Comput Biol Chem 2006; 30:215 - 218
  • Liu D, Xu Y, Feng Y, Liu H, Shen X, Chen K, Ma J, Jiang H. Inhibitor discovery targeting the intermediate structure of beta-amyloid peptide on the conformational transition pathway: Implications in the aggregation mechanism of beta-amyloid peptide. Biochemistry 2006; 45:10963 - 10972
  • Wolfe MS. Therapeutic strategies for Alzheimer's disease. Nat Rev Drug Discov 2002; 1:859 - 866
  • Kokkoni N, Stott K, Amijee H, Mason JM, Doig AJ. N-Methylated peptide inhibitors of beta-amyloid aggregation and toxicity: Optimization of the inhibitor structure. Biochemistry 2006; 45:9906 - 9918
  • Gordon DJ, Sciarretta KL, Meredith SC. Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 2001; 40:8237 - 8245
  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280:5892 - 5901

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.