1,055
Views
30
CrossRef citations to date
0
Altmetric
Mini Review

Protein Misfolding and the Serpinopathies

, , &
Pages 15-20 | Received 22 Jan 2007, Accepted 06 Feb 2007, Published online: 01 Mar 2007

References

  • Silverman GA, Bird PI, Carrell RW, Coughlin PB, Gettins PG, Irving JI, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but funtionally diverse proteins: Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276:33293 - 33296
  • Irving JA, Steenbakkers PJ, Lesk AM, Op den Camp HJ, Pike RN, Whisstock JC. Serpins in prokaryotes. Mol Biol Evol 2002; 19:1881 - 1890
  • Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol 2006; 7:216
  • Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G. Inhibition of interleukin 1β converting enzyme by the cowpox virus serpin CrmA: An example of cross-class inhibition. J Biol Chem 1994; 269:19331 - 19337
  • Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inze D, Harris JL, Van Breusegem F. Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 2006; 364:625 - 636
  • Kaiserman D, Whisstock JC, Bird PI. Mechanisms of serpin dysfunction in disease. Expert Rev Mol Med 2006; 8:1 - 19
  • Hunt LT, Dayhoff MO. A surprising new protein superfamily containing ovalbumin, antithrombin-III, and α1-proteinase inhibitor. Biochem Biophys Res Commun 1980; 95:864 - 871
  • Carrell R, Travis J. α1-antitrypsin and the serpins: Variation and countervariation. Trends Biochem Sci 1985; 10:20 - 24
  • Elliott PR, Lomas DA, Carrell RW, Abrahams JP. Inhibitory conformation of the reactive loop of α1-antitrypsin. Nat Struct Biol 1996; 3:676 - 681
  • Ryu SE, Choi HJ, Kwon KS, Lee KN, Yu MH. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: Crystal structure of an uncleaved α1-antitrypsin at 2.7 Å. Structure 1996; 4:1181 - 1192
  • Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 1997; 94:14683 - 14688
  • Elliott PR, Abrahams JP, Lomas DA. Wild-type α1-antitrypsin is in the canonical inhibitory conformation. J Mol Biol 1998; 275:419 - 425
  • Li J, Wang Z, Canagarajah B, Jiang H, Kanost M, Goldsmith EJ. The structure of active serpin 1K from Manduca sexta. Structure 1999; 7:103 - 109
  • Elliott PR, Pei XY, Dafforn TR, Lomas DA. Topography of a 2.0Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci 2000; 9:1274 - 1281
  • Kim SJ, Woo JR, Seo EJ, Yu MH, Ryu SE. A 2.1 Å resolution structure of an uncleaved α1-antitrypsin shows variability of the reactive center and other loops. J Mol Biol 2001; 306:109 - 119
  • Ye S, Cech AL, Belmares R, Bergstrom RC, Tong Y, Corey DR, Kanost MR, Goldsmith EJ. The structure of a Michaelis serpin-protease complex. Nat Struct Biol 2001; 8:979 - 983
  • Dementiev A, Simonovic M, Volz K, Gettins PG. Canonical inhibitor-like interactions explain reactivity of α1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem 2003; 278:37881 - 37887
  • Wilczynska M, Fa M, Ohlsson PI, Ny T. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem 1995; 270:29652 - 29655
  • Huntington JA. Shape-shifting serpins - Advantages of a mobile mechanism. Trends Biochem Sci 2006; 31:427 - 435
  • Wilczynska M, Fa M, Karolin J, Ohlsson PI, Johansson LBA, Ny T. Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nature Structural Biology 1997; 4:354 - 357
  • Stratikos E, Gettins PGW. Major proteinase movement upon stable serpin-proteinase complex-formation. Proc Natl Acad Sci USA 1997; 94:453 - 458
  • Stratikos E, Gettins PG. Mapping the serpin-proteinase complex using single cysteine variants of α1-proteinase inhibitor Pittsburgh. J Biol Chem 1998; 273:15582 - 15589
  • Stratikos E, Gettins PG. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70Å and full insertion of the reactive center loop into β-sheet A. Proc Natl Acad Sci USA 1999; 96:4808 - 4813
  • Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407:923 - 926
  • Fa M, Bergstrom F, Hagglof P, Wilczynska M, Johansson LB, Ny T. The structure of a serpin-protease complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure 2000; 8:397 - 405
  • Carrell RW, Owen MC. Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 1985; 317:730 - 732
  • Kaslik G, Kardos J, Szabo E, Szilagyi L, Zavodszky P, Westler WM, Markley JL, Graf L. Effects of serpin binding on the target proteinase: Global stabilization, localized increased structural flexibility, and conserved hydrogen bonding at the active site. Biochemistry 1997; 36:5455 - 5464
  • Dementiev A, Dobo J, Gettins PG. Active site distortion is sufficient for proteinase inhibition by serpins: Structure of the covalent complex of α1-proteinase inhibitor with porcine pancreatic elastase. J Biol Chem 2006; 281:3452 - 3457
  • Mast AE, Enghild JJ, Pizzo SV, Salvesen G. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: Comparison of α1-proteinase inhibitor, α1-antichymotrypsin, antithrombin III, α2-antiplasmin, angiotensinogen, and ovalbumin. Biochemistry 1991; 30:1723 - 1730
  • Nykjær A, Petersen CM, Moller B, Jensen PH, Moestrup SK, Holtet TL, Etzerodt M, Thøgersen HC, Munch M, Andreasen PA, Gliemann J. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase·plasminogen activator inhibitor type-1 complex: Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 1992; 267:14543 - 14546
  • Andreasen PA, Sottrup-Jensen L, Kjøller L, Nykjær A, Moestrup SK, Petersen CM, Gliemann J. Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett 1994; 338:239 - 245
  • Whisstock JC, Bottomley SP. Molecular gymnastics: Serpin structure, folding and misfolding. Curr Opin Struct Biol 2006; 16:761 - 768
  • Lomas DA, Mahadeva R. α1-antitrypsin polymerization and the serpinopathies: Pathobiology and prospects for therapy. J Clin Invest 2002; 110:1585 - 1590
  • Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet 2002; 3:759 - 768
  • Carrell RW, Lomas DA. α1-antitrypsin deficiency: A model for conformational diseases. N Engl J Med 2002; 346:45 - 53
  • Carrell RW, Lomas DA. Conformational disease. Lancet 1997; 350:134 - 138
  • Brantly M, Nukiwa T, Crystal RG. Molecular basis of α1-antitrypsin deficiency. Am J Med 1988; 84:13 - 31
  • Billingsley GD, Walter MA, Hammond GL, Cox DW. Physical mapping of four serpin genes: α1-antitrypsin, α1-antichymotrypsin, corticosteroid-binding globulin, and protein C inhibitor, within a 280-kb region on chromosome 14q32.1. Am J Human Genet 1993; 52:343 - 353
  • Blanco I, Fernández E, Bustillo EF. Alpha-1-antitrypsin PI phenotypes S and Z in Europe: An analysis of the published surveys. Clin Genet 2001; 60:31 - 41
  • Blanco I, Bustillo EF, Rodriguez MC. Distribution of α1-antitrypsin PI S and PI Z frequencies in countries outside Europe: A meta-analysis. Clin Genet 2001; 60:431 - 441
  • Sharp HL, Bridges RA, Krivit W, Freier EF. Cirrhosis associated with α1-antitrypsin deficiency: A previously unrecognized inherited disorder. J Lab Clin Med 1969; 73:934 - 939
  • Eriksson S, Larsson C. Purification and partial characterization of PAS-positive inclusion bodies from the liver in α1-antitrypsin deficiency. N Engl J Med 1975; 292:176 - 180
  • Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in α1-antitrypsin deficiency. N Engl J Med 1986; 314:736 - 739
  • Janciauskiene S, Eriksson S, Callea F, Mallya M, Zhou A, Seyama K, Hata S, Lomas DA. Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of α1-antitrypsin. Hepatology 2004; 40:1203 - 1210
  • Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 1992; 357:605 - 607
  • James EL, Bottomley SP. The mechanism of α1-antitrypsin polymerization probed by fluorescence spectroscopy. Arch Biochem Biophys 1998; 356:296 - 300
  • Dafforn TR, Mahadeva R, Elliott PR, Sivasothy P, Lomas DA. A kinetic mechanism for the polymerization of α1-antitrypsin. J Biol Chem 1999; 274:9548 - 9555
  • Sivasothy P, Dafforn TR, Gettins PG, Lomas DA. Pathogenic α1-antitrypsin polymers are formed by reactive loop-β-sheet A linkage. J Biol Chem 2000; 275:33663 - 33668
  • Purkayastha P, Klemke JW, Lavender S, Oyola R, Cooperman BS, Gai F. α1-antitrypsin polymerization: A fluorescence correlation spectroscopic study. Biochemistry 2005; 44:2642 - 2649
  • Lawless MW, Greene CM, Mulgrew A, Taggart CC, O'Neill SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α1-antitrypsin deficiency. J Immunol 2004; 172:5722 - 5726
  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 2005; 280:39002 - 39015
  • Teckman JH, Perlmutter DH. Retention of mutant α1-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 2000; 279:G961 - G974
  • Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2004; 286:G851 - G862
  • Kamimoto T, Shoji S, Hidvegi T, Mizushima N, Umebayashi K, Perlmutter DH, Yoshimori T. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 2006; 281:4467 - 4476
  • Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: One for soluble Z variant of human α1-proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 2006; 17:203 - 212
  • Seyama K, Nukiwa T, Takabe K, Takahashi H, Miyake K, Kira S. Siiyama (serine 53 (TCC) to phenylalanine 53 (TTC)): A new α1-antitrypsin-deficient variant with mutation on a predicted conserved residue of the serpin backbone. J Biol Chem 1991; 266:12627 - 12632
  • Roberts EA, Cox DW, Medline A, Wanless IR. Occurrence of α1-antitrypsin deficiency in 155 patients with alcoholic liver disease. Am J Clin Pathol 1984; 82:424 - 427
  • Zhou A, Stein PE, Huntington JA, Carrell RW. Serpin polymerisation is prevented by a hydrogen-bond network which is centred on His 334 and stabilised by glycerol. J Biol Chem 2003; 278:15116 - 15122
  • Kang HA, Lee KN, Yu MH. Folding and stability of the Z and S(iiyama) genetic variants of human α1-antitrypsin. J Biol Chem 1997; 272:510 - 516
  • Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. α1-antitrypsin Siiyama (Ser53➞Phe): Further evidence for intracellular loop-sheet polymerization. J Biol Chem 1993; 268:15333 - 15335
  • Lomas DA, Elliott PR, Sidhar SK, Foreman RC, Finch JT, Cox DW, Whisstock JC, Carrell RW. α1-antitrypsin Mmalton (52Phe-deleted) forms loop-sheet polymers in vivo: Evidence for the C sheet mechanism of polymerization.. J Biol Chem 1995; 270:16864 - 16870
  • Elliott PR, Stein PE, Bilton D, Carrell RW, Lomas DA. Structural explanation for the deficiency of S α1-antitrypsin. Nat Struct Biol 1996; 3:910 - 911
  • Mahadeva R, Chang WS, Dafforn TR, Oakley DJ, Foreman RC, Calvin J, Wight DG, Lomas DA. Heteropolymerization of S, I, and Z α1-antitrypsin and liver cirrhosis. J Clin Invest 1999; 103:999 - 1006
  • Campra JL, Craig JR, Peters RL, Reynolds TB. Cirrhosis associated with partial deficiency of α1-antitrypsin in an adult. Ann Intern Med 1973; 78:233 - 238
  • Cruz M, Molina J, Pedrola D, Muñoz-López F. Cirrhosis and heterozygous α1-antitrypsin deficiency in a 4 year old girl. Helv Paediatr Acta 1975; 30:501 - 507
  • Laurell CB, Eriksson S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15:132 - 140
  • Eriksson S. Studies in α1-antitrypsin deficiency. Acta Med Scand Suppl 1965; 432:1 - 85
  • Stein PD, Leu JD, Welch MH, Guenter CA. Pathophysiology of the pulmonary circulation in emphysema associated with α1-antitrypsin deficiency. Circulation 1971; 43:227 - 239
  • Larsson C. Natural history and life expectancy in severe α1-antitrypsin deficiency, PiZ. Acta Med Scand 1978; 204:345 - 351
  • Janus ED, Phillips NT, Carrell RW. Smoking lung function, and α1-antitrypsin deficiency. Lancet 1985; 1:152 - 154
  • Elliott PR, Bilton D, Lomas DA. Lung polymers in Z α1-antitrypsin deficiency-related emphysema. Am J Respir Cell Mol Biol 1998; 18:670 - 674
  • Mulgrew AT, Taggart CC, Lawless MW, Greene CM, Brantly ML, O'Neill SJ, McElvaney NG. Z α1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest 2004; 125:1952 - 1957
  • Parmar JS, Mahadeva R, Reed BJ, Farahi N, Cadwallader KA, Keogan MT, Bilton D, Chilvers ER, Lomas DA. Polymers of α1-antitrypsin are chemotactic for human neutrophils: A new paradigm for the pathogenesis of emphysema. Am J Respir Cell Mol Biol 2002; 26:723 - 730
  • Mahadeva R, Atkinson C, Li Z, Stewart S, Janciauskiene S, Kelley DG, Parmar J, Pitman R, Shapiro SD, Lomas DA. Polymers of Z α1-antitrypsin colocalize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am J Pathol 2005; 166:377 - 386
  • Janciauskiene S, Zelvyte I, Jansson L, Stevens T. Divergent effects of α1-antitrypsin on neutrophil activation, in vitro. Biochem Biophys Res Commun 2004; 315:288 - 296
  • Persson C, Subramaniyam D, Stevens T, Janciauskiene S. Do native and polymeric α1-antitrypsin activate human neutrophils in vitro?. Chest 2006; 129:1683 - 1692
  • Corral J, Aznar J, Gonzalez-Conejero R, Villa P, Minano A, Vaya A, Carrell RW, Huntington JA, Vicente V. Homozygous deficiency of heparin cofactor II: Relevance of P17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis. Circulation 2004; 110:1303 - 1307
  • Green C, Brown G, Dafforn TR, Reichhart JM, Morley T, Lomas DA, Gubb D. Drosophila necrotic mutations mirror disease-associated variants of human serpins. Development 2003; 130:1473 - 1478
  • Davis RL, Holohan PD, Shrimpton AE, Tatum AH, Daucher J, Collins GH, Todd R, Bradshaw C, Kent P, Feiglin D, Rosenbaum A, Yerby MS, Shaw CM, Lacbawan F, Lawrence DA. Familial encephalopathy with neuroserpin inclusion bodies. Am J Pathol 1999; 155:1901 - 1913
  • Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu B, Elliott PR, Finch JT, Carrell RW, Lomas DA. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999; 401:376 - 379
  • Davis RL, Shrimpton AE, Carrell RW, Lomas DA, Gerhard L, Baumann B, Lawrence DA, Yepes M, Kim TS, Ghetti B, Piccardo P, Takao M, Lacbawan F, Muenke M, Sifers RN, Bradshaw CB, Kent PF, Collins GH, Larocca D, Holohan PD. Association between conformational mutations in neuroserpin and onset and severity of dementia (erratum 2002, 360, 1102). Lancet 2002; 359:2242 - 2247
  • Bradshaw CB, Davis RL, Shrimpton AE, Holohan PD, Rea CB, Fieglin D, Kent P, Collins GH. Cognitive deficits associated with a recently reported familial neurodegenerative disease: Familial encephalopathy with neuroserpin inclusion bodies. Arch Neurol 2001; 58:1429 - 1434
  • Briand C, Kozlov SV, Sonderegger P, Grutter MG. Crystal structure of neuroserpin: A neuronal serpin involved in a conformational disease. FEBS Lett 2001; 505:18 - 22
  • Takao M, Benson MD, Murrell JR, Yazaki M, Piccardo P, Unverzagt FW, Davis RL, Holohan PD, Lawrence DA, Richardson R, Farlow MR, Ghetti B. Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J Neuropathol Exp Neurol 2000; 59:1070 - 1086
  • Belorgey D, Crowther DC, Mahadeva R, Lomas DA. Mutant neuroserpin (S49P) that causes familial encephalopathy with neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J Biol Chem 2002; 277:17367 - 17373
  • Belorgey D, Sharp LK, Crowther DC, Onda M, Johansson J, Lomas DA. Neuroserpin Portland (Ser52Arg) is trapped as an inactive intermediate that rapidly forms polymers: Implications for the epilepsy seen in the dementia FENIB. Eur J Biochem 2004; 271:3360 - 3367
  • Onda M, Belorgey D, Sharp LK, Lomas DA. Latent S49P neuroserpin forms polymers in the dementia familial encephalopathy with neuroserpin inclusion bodies. J Biol Chem 2005; 280:13735 - 13741
  • Miranda E, Romisch K, Lomas DA. Mutants of neuroserpin that cause dementia accumulate as polymers within the endoplasmic reticulum. J Biol Chem 2004; 279:28283 - 28291
  • Mahadeva R, Dafforn TR, Carrell RW, Lomas DA. Six-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerisation: Implications for the prevention of Z α1-antitrypsin related cirrhosis. J Biol Chem 2002; 277:6771 - 6774
  • Chang YP, Mahadeva R, Chang WS, Shukla A, Dafforn TR, Chu YH. Identification of a 4-mer peptide inhibitor that effectively blocks the polymerization of pathogenic Z α1-antitrypsin. Am J Respir Cell Mol Biol 2006; 35:540 - 548
  • Sharp LK, Mallya M, Kinghorn KJ, Wang Z, Crowther DC, Huntington JA, Belorgey D, Lomas DA. Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis. FEBS J 2006; 273:2540 - 2552
  • Burrows JA, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: A potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc Natl Acad Sci USA 2000; 97:1796 - 1801
  • Devlin GL, Parfrey H, Tew DJ, Lomas DA, Bottomley SP. Prevention of polymerization of M and Z α1-Antitrypsin (α1-AT) with trimethylamine N-oxide: Implications for the treatment of α1-AT deficiency. Am J Respir Cell Mol Biol 2001; 24:727 - 732
  • Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum α1-antitrypsin in patients with α1-antitrypsin deficiency: A preliminary study. J Pediatr Gastroenterol Nutr 2004; 39:34 - 37
  • Lee C, Maeng JS, Kocher JP, Lee B, Yu MH. Cavities of α1-antitrypsin that play structural and functional roles. Protein Sci 2001; 10:1446 - 1453
  • Parfrey H, Mahadeva R, Ravenhill NA, Zhou A, Dafforn TR, Foreman RC, Lomas DA. Targeting a surface cavity of α1-antitrypsin to prevent conformational disease. J Biol Chem 2003; 278:33060 - 33066
  • Lomas DA, Belorgey D, Mallya M, Miranda E, Kinghorn KJ, Sharp LK, Phillips RL, Page R, Robertson AS, Crowther DC. Molecular Mousetraps and the Serpinopathies. Biochem Soc Trans 2005; 33:321 - 330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.